zbMATH — the first resource for mathematics

Perfect codes and the Mathieu groups. (English) Zbl 0144.26203

group theory
Full Text: DOI
[1] E.Artin, Geometric algebra. New York 1957. · Zbl 0077.02101
[2] H. S. M. Coxeter, Twelve points inPG(5,3) with 95,040 selftransformations. Philos. Trans. Roy. Soc. London, Ser. A,247, 279–293 (1958). · Zbl 0082.36207
[3] D. Garbe andJ. L. Mennicke, Some remarks on the Mathieu groups. Canadian Math. Bull.7, 201–212 (1964). · Zbl 0129.01802
[4] M. Hall, Note on the Mathieu groupM 12. Arch. Math.13, 334–340 (1962). · Zbl 0109.25704
[5] H. F. Mattson andG. Solomon, A new treatment of Bose-Chaudhuri codes. J. Soc. Indust. Appl. Math.9, 654–669 (1961). · Zbl 0137.13604
[6] L. J. Paige, A note on the Mathieu groups. Canadian J. Math.9, 15–18 (1956). · Zbl 0077.03203
[7] W.Peterson, Error-correcting codes. New York 1961. · Zbl 0105.32802
[8] E. Prange, Codes equivalent under the protective group (III). Air Force Cambridge Research Laboratories, Bedford, Massachusetts, 10 July 1962 (unpublished memorandum).
[9] J. A. Todd, On representations of the Mathieu groups as collineation groups. J. London Math. Soc.34, 406–416 (1959). · Zbl 0089.16801
[10] E. Witt, Über Steinersche Systeme. Abh. Math. Sem. Univ. Hamburg12, 265–275 (1936). · Zbl 0019.25106
[11] E. Witt, Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Sem. Univ. Hamburg12, 256–264 (1936). · JFM 64.0963.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.