×

zbMATH — the first resource for mathematics

Hyponormal operators and spectral density. (English) Zbl 0139.31201
Trans. Am. Math. Soc. 117, 469-476 (1965); Errata. Ibid. 115, 550 (1965).

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Errett Bishop, Spectral theory for operators on a Banach space, Trans. Amer. Math. Soc. 86 (1957), 414 – 445. · Zbl 0080.09903
[2] Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723 – 728. · Zbl 0051.34303
[3] William F. Donoghue Jr., On a problem of Nieminen, Inst. Hautes √Čtudes Sci. Publ. Math. 16 (1963), 31 – 33.
[4] Nelson Dunford, Spectral theory. II. Resolutions of the identity, Pacific J. Math. 2 (1952), 559 – 614. · Zbl 0047.35903
[5] Nelson Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217 – 274. · Zbl 0088.32102
[6] Paul R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125 – 134.
[7] Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. · Zbl 0102.29401
[8] Ching-Hwa Meng, On the numerical range of an operator, Proc. Amer. Math. Soc. 14 (1963), 167 – 171. · Zbl 0113.10004
[9] Toivo Nieminen, A condition for the self-adjointness of a linear operator, Ann. Acad. Sci. Fenn. Ser. A I No 316 (1962), 5. · Zbl 0105.09302
[10] Jack Schwartz, Subdiagonalization of operators in Hilbert space with compact imaginary part, Comm. Pure Appl. Math. 15 (1962), 159 – 172. · Zbl 0111.11303 · doi:10.1002/cpa.3160150205 · doi.org
[11] Joseph G. Stampfli, Hyponormal operators, Pacific J. Math. 12 (1962), 1453 – 1458. · Zbl 0129.08701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.