×

zbMATH — the first resource for mathematics

On the classification of fiber spaces. (English) Zbl 0139.16603

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Brown, E. H.: Abstract homotopy theory. A.M.S. Summer Topology Institute, Seattle 1963.
[2] ?: Cohomology theories. Ann. of Math.75, 467-484 (1962). · Zbl 0101.40603
[3] Dold, A.: Partitions of unity in the theory of fibrations. Ann. of Math. (2)78, 223-255 (1963). · Zbl 0203.25402
[4] ?, andR. Lashof: Principal quasi fibrations and fiber homotopy equivalence. Illinois J. Math.3, 285-305 (1959).
[5] ?, u.R. Thom: Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math.67, 239-281 (1958). · Zbl 0091.37102
[6] Fadell, E.: On fiber homotopy equivalence. Duke Math. J.26, 699-706 (1959). · Zbl 0105.35301
[7] Fox, R. H.: On topologies for function spaces. Bull. Am. Math. Soc.51, 429-432 (1945). · Zbl 0060.41202
[8] Ganea, T.: Fibrations and cocategories. Comment. Math. Helv.35, 15-24 (1961). · Zbl 0093.37102
[9] Hilton, P. J.: On excision and principal fibrations. Comment. Math. Helv.35, 77-84 (1961). · Zbl 0107.16804
[10] Hu, S. T.: Elements of general topology. Holden-Day, Inc. 1964. · Zbl 0209.53803
[11] James, I. M.: The transgression and Hopf invariant of a fibration. Proc. Lond. Math. Soc.11, 589-600 (1961). · Zbl 0108.36002
[12] Milnor, J.: On space having the homotopy type of CW complexes. Trans. Amer. Math. Soc.90, 272-280 (1959). · Zbl 0084.39002
[13] Spanier, E.: Infinite symmetric products, function spaces and duality. Ann. of Math.69, 142-197 (1959). · Zbl 0086.37401
[14] ?: Function spaces and duality. Ann. of Math.70, 338-378 (1959). · Zbl 0090.12905
[15] Stasheff, J.: A classification theorem for fiber spaces. Topology2, 239-246 (1963). · Zbl 0123.39705
[16] Whitehead, J. H. C.: Combinatorial homotopy I. Bull. Amer. Math. Soc.55, 213-245 (1949). · Zbl 0040.38704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.