×

zbMATH — the first resource for mathematics

Steenrod operations in homological algebra. (English) Zbl 0139.01502

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Butler, M.C.R., andG. Horrocks: Classes of extensions and resolutions. Proc. Trans. Roy. Soc. London, Series A254, 155-222 (1961). · Zbl 0099.25902 · doi:10.1098/rsta.1961.0014
[2] Cartan, H., andS. Eilenberg: Homological algebra. Princeton University Press 1956. · Zbl 0075.24305
[3] Epstein, D.B.A.: Functors between tensored categories. Invent. math. (to appear). · Zbl 0146.02502
[4] Epstein, D.B.A.: On semisimplicial objects and the Eilenberg-Zilber theorem. Invent. math. (to appear). · Zbl 0163.26702
[5] Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J.9, 119-221 (1957). · Zbl 0118.26104
[6] Huber, P.J.: Homotopy theory in general categories. Math. Annalen144, 361-385 (1961). · Zbl 0099.17905 · doi:10.1007/BF01396534
[7] Liulevicius, A.: The factorization of cyclic redduced powers by secondary cohomology operations. memoirs A.M.S. (1962). · Zbl 0131.38101
[8] MacLane, S.: Homology. Berlin-Göttingen-Heidelberg: Springer 1963.
[9] ?: Natural associativity and commutativity. Rice University Studies49, No. 4, 28-46 (1963). · Zbl 0244.18008
[10] Steenrod, N., andD.B.A. Epstein: Cohomology operations. Lectures by N.E.Steenrod, written and revised byD.B.A. Epstein, Annals of Mathematics Studies No. 50, Princeton 1962. Errata to the above (obtainable from either author).
[11] Yoneda, N.: On the homology theory of modules. J. Fac. Sci. Tokyo, Sec. I8, 507-526 (1960). · Zbl 0163.26902
[12] Godement, R.: Théorie des Faisceaux, Paris: Hermann 1958. · Zbl 0080.16201
[13] Epstein, D.B.A.: On sign conventions and monomorphisms. (Mineographed notes.)
[14] Grothendieck, A.: Eléments de géométrie algébrique, III. Publications Mathématiques, No. 11, Institut des Hautes Etude Scientifiques. 1961.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.