×

zbMATH — the first resource for mathematics

The lattice of all convex l-subgroups of a lattice-ordered group. (English) Zbl 0135.06301

Keywords:
group theory
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] K. Aubert: Theory of x-ideals. Acta Math. 107 (1962), 1-52. · Zbl 0108.26002 · doi:10.1007/BF02545781
[2] G. Birkhoff: Lattice theory. Rev. (1949), Amer. Math. Soc. Colloquium Pub. 25. · Zbl 0063.00402
[3] P. Conrad: Embedding theorems for abelian groups with valuations. Amer. J. Math. 75 (1953), 1-29. · Zbl 0050.02303 · doi:10.2307/2372611
[4] P. Conrad: Some structure theorems for lattice-ordered groups. Trans. Amer. Math. Soc. 99 (1961), 212-240. · Zbl 0099.25401 · doi:10.2307/1993391
[5] P. Conrad J. Harvey C. Holland: The Hahn embedding theorem for abelian lattice-ordered groups. Trans. Amer. Math. Soc. 108 (1963), 143-169. · Zbl 0126.05002 · doi:10.2307/1993830
[6] P. Conrad: The relationship between the radical of a lattice-ordered group and complete distributivity. Pacific J. Math. 14 (1964), 493-499 · Zbl 0122.03701 · doi:10.2140/pjm.1964.14.493
[7] L. Fuchs: Partially ordered algebraic systems. Pergamon Press (1963). · Zbl 0137.02001
[8] H. Hahn: Über die nichtarchimedischen Grössensysteme. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vienna, 116 (1907), 601 - 653. · JFM 38.0501.01
[9] C. Holland: Extensions of ordered groups and sequence completion. Trans. Amer. Math. Soc. 107 (1963), 71-82. · Zbl 0117.26903 · doi:10.2307/1993868
[10] C. Holland: The lattice-ordered group of automorphisms of an ordered set. Michigan Math. J. 10 (1963), 399-408. · Zbl 0116.02102 · doi:10.1307/mmj/1028998976
[11] A. Lavis: Sur les quotients totalement ordonnés d’un groupe linéairement ordonné. Bull. Soc. Royal Sciences Liège, 32 (1963), 204-208. · Zbl 0122.27902
[12] K. Lorenz: Über Strukturverbände von Verbandsgruppen. Acta Math. Acad. Sci. Hungaricae, 75 (1962), 55-67. · Zbl 0109.25502 · doi:10.1007/BF02033625
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.