×

zbMATH — the first resource for mathematics

Asymptotic expansions and analytic continuations for a class of Barnes- integrals. (English) Zbl 0129.28604

PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] L.V. Ahlfors [1] Complex Analysis . New York, 1953. · Zbl 0052.07002
[2] E.W. Barnes [2] The asymptotic expansion of integral functions defined by Taylor’s series . Phil. Trans. Roy. Soc. London (A), 206, 249-297 (1906). · JFM 37.0427.01
[3] The asymptotic expansion of integral functions defined by generalized hypergeometric series . Proc. London Math. Soc. (2), 5, 59-116 (1907). · JFM 38.0449.01
[4] A new development of the theory of the hypergeometric functions . Proc. London Math. Soc. (2), 6, 141-177 (1908). · JFM 39.0506.01
[5] S. Bochner [5] Some properties of modular relations . Ann. of Math. 53, 332-363 (1951). · Zbl 0042.32101 · doi:10.2307/1969546
[6] Theorems on analytic continuation which occur in the study of Riemann’s functional equation . Journ. Indian Math. Soc., New Series 21, 127-147 (1957). · Zbl 0096.05203
[7] On Riemann’s functional equation with multiple gamma factors . Ann. of Math. 67, 29-41 (1958). · Zbl 0082.29002 · doi:10.2307/1969923
[8] J. Boersma [7] On a function, which is a special case of Meijer’s G-function . Compos. Math. 15, 34-63 (1962). · Zbl 0100.06505 · numdam:CM_1962-1964__15__34_0 · eudml:88880
[9] T.J. I’ A. Bromwich [8] An introduction to the theory of infinite series . 2nd ed., London, 1949. · JFM 39.0306.02|0004.00705
[10] K. Chandrasekharan and Raghavan Narasimhan [9] Functional equations with multiple gamma factors and the average order of arithmetical functions . Ann. of Math. 76, 93-136 (1962). · Zbl 0211.37901 · doi:10.2307/1970267
[11] E.T. Copson [10] An introduction to the theory of functions of a complex variable . Oxford, 1950. · Zbl 0012.16902
[12] J.G. Van Der Corput [11] On the coefficients in certain asymptotic factorial expansions I, II . Proc. Kon. Ned. Akad. Wet. Ser. A, 60, 337-351 (1957). · Zbl 0079.09903
[13] A.L. Dixon and W.L. Ferrar [12] A class of discontinuous integrals . Quart. Journ. Math. Oxford Ser. 7, 81-96 (1936). · JFM 62.0480.01|0014.10804
[14] G. Doetsch [13] Handbuch der Laplace-Transformation I, II Basel, 1950, 1955. · Zbl 0040.05901
[15] A. Erdélyi [14] Asymptotic expansions . New York, 1956. · Zbl 0070.29002
[16] A. Erdélyi , W. Magnus , F. Oberhettinger , F.G. Tricomi [15] Higher transcendental functions I . New York, 1953. · Zbl 0051.30303
[17] W.B. Ford [16] The asymptotic developments of functions defined by Maclaurin series . Ann Arbor, 1936. · Zbl 0016.12402
[18] C. Fox [17] The asymptotic expansion of generalized hypergeometric functions . Proc. London Math. Soc. (2), 27, 389-400 (1928). · JFM 54.0392.03
[19] The G and H functions as symmetrical Fourier kernels . Trans. Amer. Math. Soc. 98, 395-429 (1961). · Zbl 0096.30804 · doi:10.2307/1993339
[20] H.K. Hughes [19] On the asymptotic expansions of entire functions defined by Maclaurin series . Bull. Amer. Math. Soc. 50, 425-430 (1944). · Zbl 0063.02937 · doi:10.1090/S0002-9904-1944-08168-8
[21] The asymptotic developments of a class of entire functions . Bull. Amer. Math. Soc. 51, 456-461 (1945). · Zbl 0063.02938 · doi:10.1090/S0002-9904-1945-08376-1
[22] T.M. Macrobert [21 ] Induction proofs of the relations between certain asymptotic expansions and corresponding generalized hypergeometric series . Proc. Roy. Soc. Edinburgh 58, 1-13 (1938). · JFM 64.0337.01|0018.06101
[23] C.S. Meijer [22] On the G-function I-VIII . Proc. Kon. Ned. Akad. Wet. 49, 227-237, 344-356, 457-469, 632-641, 765-772, 936-943, 1063-1072, 1165-1175 (1946). · Zbl 0060.19901
[24] C.V. Newsom [23] On the character of certain entire functions in distant portions of the plane . Amer. J. Math. 60, 561-572 (1938). · Zbl 0019.17106 · doi:10.2307/2371597
[25] The asymptotic behavior of a class of entire functions . Amer. J. Math. 65, 450-454 (1943). · Zbl 0063.05942 · doi:10.2307/2371969
[26] F.W.J. Olver [25] Note on the asymptotic expansion of generalized hypergeometric functions . Journ. London Math. Soc. 28, 462-464 (1953). · Zbl 0052.06903 · doi:10.1112/jlms/s1-28.4.462
[27] T.D. Riney [26] On the coefficients in asymptotic factorial expansions . Proc. Amer. Math. Soc. 7, 245-249 (1956). · Zbl 0072.06804 · doi:10.2307/2033179
[28] C.H. Rowe [27] A proof of the asymptotic series for log \Gamma (z) and log \Gamma (z+a) . Ann. of Math. Second Ser. 32, 10-16 (1931). · Zbl 0001.21301 · doi:10.2307/1968409
[29] G. Sansone and J.C.H. Gerretsen [28] Lectures on the theory of functions of a complex variable I . Groningen, 1960. · Zbl 0093.26803
[30] G.N. Watson [29] A class of integral functions defined by Taylor’s series . Trans. Cambr. Phil. Soc. 22, 15-37 (1913). · JFM 44.0476.03
[31] E.T. Whittaker and G.N. Watson [30] A course of modern analysis . 4th ed. Cambridge, 1958. · Zbl 0108.26903
[32] E.M. Wright [31] The asymptotic expansion of the generalized Bessel function . Proc. London Math. Soc. (2), 38, 257-270 (1935). · Zbl 0010.21103 · doi:10.1112/plms/s2-38.1.257
[33] The asymptotic expansion of the generalized hypergeometric function . Journ. London Math. Soc. 10, 286-293 (1935). · Zbl 0013.02104 · doi:10.1112/jlms/s1-10.40.286
[34] The asymptotic expansion of integral functions defined by Taylor series . Phil. Trans. Roy. Soc. London (A) 238, 423-451 (1940). · Zbl 0023.14002 · doi:10.1098/rsta.1940.0002
[35] The asymptotic expansion of the generalized hypergeometric function . Proc. London Math. Soc. (2) 46, 389-408 (1940). · Zbl 0025.40402 · doi:10.1112/plms/s2-46.1.389
[36] The generalized Bessel function of order greater than one . Quart. Journ. Math. Oxford Ser. 11, 36-48 (1940). · Zbl 0023.14101 · doi:10.1093/qmath/os-11.1.36
[37] The asymptotic expansion of integral functions defined by Taylor series (second paper). Phil. Trans. Roy. Soc. London (A) 239, 217-222 (1946). · Zbl 0061.14506 · doi:10.1098/rsta.1941.0002
[38] A recursion formula for the coefficients in an asymptotic expansion . Proc. Glasgow Math. Ass. 4, 38-41 (1959-1960). · Zbl 0086.06101 · doi:10.1017/S2040618500033839
[39] D. Wrinch [38] An asymptotic formula for the hypergeometric function 0\Delta 4 (z) . Philos. Magazine (6) 41, 161-173 (1921). · JFM 48.1244.01
[40] A generalized hypergeometric function with n parameters . Philos. Magazine (6) 41, 174-186 (1921).
[41] Some approximations to hypergeometric functions . Philos. Magazine (6) 45, 818-827 (1923). · JFM 49.0252.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.