×

zbMATH — the first resource for mathematics

Finite semifields and projective planes. (English) Zbl 0128.25604

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albert, A.A, On non-associative division algebras, Trans. am. math. soc., 72, 296-309, (1952) · Zbl 0046.03601
[2] Albert, A.A, Finite non-commutative division algebras, (), 928-932 · Zbl 0092.03501
[3] Albert, A.A, On the collineation groups of certain non-Desarguesian planes, Portugal. math., 18, 207-224, (1959) · Zbl 0099.15203
[4] Albert, A.A, Finite division algebras and finite planes, (), 53-70
[5] Dickson, L.E; Dickson, L.E, Linear algebras in which division is always uniquely possible, Trans. am. math. soc., Trans. am. math. soc., 7, 514-527, (1906) · JFM 37.0112.01
[6] Dickson, L.E, Linear algebras with associativity not assumed, Duke math. J., 1, 113-125, (1935) · Zbl 0012.14801
[7] Gouarné, René; Samuel, Isaac, Multidimensional matrices and determinants, Cahiers phys., 140, 133-152, (April 1962)
[8] Hall, M, The theory of groups, (), 346-420
[9] Hughes, D.R; Kleinfeld, Erwin, Semi-nuclear extensions of Galois fields, Am. J. math., 82, 389-392, (1960) · Zbl 0097.02201
[10] Hughes, D.R, Collineation groups of non-Desarguesian planes II, Am. J. math., 82, 113-119, (1960)
[11] Kleinfeld, Erwin, Techniques for enumerating veblen-Wedderburn systems, J. assoc. comp. Mach., 7, 330-337, (1960) · Zbl 0099.15303
[12] \scKnuth, D. E., A class of projective planes. Submitted for publication.
[13] Pickert, Günter, Projektiv ebenen, (1955), Springer Berlin · Zbl 0066.38707
[14] Sandler, Reuben, Autotopism groups of some finite non-associative algebras, Am. J. math., 84, 239-264, (1962) · Zbl 0156.26904
[15] Walker, R.J, Determination of division algebras with 32 elements, (), 83-85 · Zbl 0119.27301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.