×

zbMATH — the first resource for mathematics

On the cross-norm of the direct product of \(C^ *\)-algebras. (English) Zbl 0127.07302

MSC:
46Lxx Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. DIXMIER, Les algebres coperateurs dans espace hilbertien, Gauthier-Villars, 1957. · Zbl 0088.32304
[2] J. GLIMM. Type I C*-algebras, Ann. Math., 73(1961), 572-612 JSTOR: · Zbl 0152.33002 · doi:10.2307/1970319 · links.jstor.org
[3] A. GuiCHARDET, Caracteres et representations des produits tensoriels de C*-algebres, the auther’s manuscript. · Zbl 0178.49204
[4] F. J. MURRAY AND J. VONNEUMANN, On rings of operators, Ann. Math., 37(1936), 116 229. Zentralblatt MATH: JSTOR: links.jstor.org · Zbl 0014.16101 · doi:10.2307/1968693 · www.zentralblatt-math.org
[5] Z. TAKEDA, Inductive limit and infinite direct product of operator algebras, Tohok Math. Journ., 7(1955), 67-86. · Zbl 0065.34903 · doi:10.2748/tmj/1178245105
[6] M. TAKESAKI, A note on the cross-norm of the direct product of operator algebras, Kodai Math. Sem. Rep., 10(1958), 137-140. · Zbl 0086.09901 · doi:10.2996/kmj/1138844027
[7] T. TURUMARU, On the direct product of operator algebras I, Tohoku Math. Journ., 4(1952), 242-251. · Zbl 0049.08701 · doi:10.2748/tmj/1178245371
[8] T. TURUMARU, On the direct product of operator algebras II, Thoku Math. Journ., 5(1953), 1-7. · Zbl 0051.34301 · doi:10.2748/tmj/1178245343
[9] T. TURUMARU, On the direct product of operator algebras III, Thoku Math. Journ., 6(1954), 208-211. · Zbl 0057.34304 · doi:10.2748/tmj/1178245181
[10] T. TURUMARU, On the direct product of operator algebras IV, Thoku Math. Journ., 8(1956), 281-285. · Zbl 0072.32903 · doi:10.2748/tmj/1178244952
[11] H. YOSHIZAWA, Some remarks on unitary representations of the free group, Osak Math. Journ., 3(1951), 55-63. · Zbl 0045.30103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.