×

zbMATH — the first resource for mathematics

Variational principles in the linear theory of viscoelasticity. (English) Zbl 0123.40803

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Sokolnikoff, I. S.: Mathemat ical Theory of Elasticity, Second Ed. New York: McGraw-Hill 1956. · Zbl 0070.41104
[2] Southwell, R. V.: Castigliano’s principle of minimum strain-energy. Proc. R. Soc. London, Ser. A154, 4 (1936). · JFM 62.0937.02
[3] Langhaar, H. L.: The principle of complementary energy in nonlinear elasticity theory. J. Franklin Inst.256, 16, 255 (1953).
[4] Dorn, W. S., & A.Schild: A converse of the virtual work theorem for deformable solids. Quart. Appl. Math.14, 2, 209 (1956). · Zbl 0074.19201
[5] Hellinger, E.: Die Allgemeinen Ansätze der Mechanik der Kontinua, in: Encyklopädie der Mathematischen Wissenschaften, 4, Part 4 (1914), 5, 654. · JFM 45.1012.01
[6] Reissner, E.: On a variational theorem in elasticity. J. Math. Phys.29, 2, 90 (1950). · Zbl 0039.40502
[7] Reissner, E.: On variational principles in elasticity, Proceedings of Symposia in Applied Mathematics, Vol. 8, Calculus of Variations and its Applications. New York: McGraw-Hill 1958. · Zbl 0168.22405
[8] Hai-chang, Hu: On some variational principles in the theory of elasticity and the theory of plasticity. Sc. Sinica4, 1, 33 (1955). · Zbl 0066.17903
[9] Washizu, K.: On the variational principles of elasticity and plasticity. Rept. 25-18, Cont. N 5ori-07833, Massachusetts Institute of Technology, March 1955. · Zbl 0064.37703
[10] Biot, M. A.: Variational and Lagrangian methods in visco-elasticity, in: Deformation and Flow of Solids. Berlin-Göttingen-Heidelberg: Springer 1955. · Zbl 0067.23603
[11] Freudenthal, A. M., & H.Geiringer: The mathematical theories of the inelastic continuum, in: Encyclopedia of Physics, Vol. 6. Berlin-Göttingen-Heidelberg: Springer 1958.
[12] Onat, E. T.: On a variational principle in linear viscoelasticity. J. Mec.1 2, 135 (1962). · Zbl 0113.17801
[13] Gurtin, M. E., & E.Sternberg: On the linear theory of viscoelasticity. Arch. Rational Mech. Anal.11, 291-356 (1962). · Zbl 0107.41007
[14] Kellogg, O. D.: Foundations of Potential Theory. Berlin: Springer 1929. · JFM 55.0282.01
[15] Rogers, T. G., & A. C.Pipkin: Asymmetric relaxation and compliance matrices in linear viscoelasticity. Rept. No. 83, Contract Nonr 562(10), Brown University, July 1962. To appear in Z. angew. Math. Mech. · Zbl 0125.13601
[16] Taylor, A. E.: Introduction to Functional Analysis. New York: John Wiley 1961. · Zbl 0104.42803
[17] Gurtin, M. E.: A generalization of the Beltrami stress functions in continuum mechanics. Rept. No. 20, Cont. Nonr 562(25), Brown University, April 1963. To appear in the Arch. Rational Mech. Anal. · Zbl 0203.26802
[18] Nielsen, J.: Elementare Mechanik. Berlin: Springer 1935. · JFM 61.1465.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.