×

zbMATH — the first resource for mathematics

Implicit Runge-Kutta processes. (German) Zbl 0123.11701

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc. 3 (1963), 185 – 201. · Zbl 0223.65031
[2] C. Runge, Ueber die numerische Auflösung von Differentialgleichungen, Math. Ann. 46 (1895), no. 2, 167 – 178 (German). · JFM 26.0341.01 · doi:10.1007/BF01446807 · doi.org
[3] W. Kutta, “Beitrag zur naherungsweisen Integration von Differentialgleichungen,” Zeit. Math. Physik, v. 46, 1901, p. 435-453. · JFM 32.0316.02
[4] E. J. Nyström, “Über die numerische Integration von Differentialgleichungen,” Acta Soc. Sci. Fennicae, v. 50, 1925, p. 1-55.
[5] S. Gill, A process for the step-by-step integration of differential equations in an automatic digital computing machine, Proc. Cambridge Philos. Soc. 47 (1951), 96 – 108. · Zbl 0042.13202
[6] A. Hu\?a, Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premier ordre, Acta Fac. Nat. Univ. Comenian. Math. 1 (1956), 201 – 224 (French, with Slovak and Russian summaries). · Zbl 0074.10803
[7] A. Hu\?a, “Contribution à la formule de sixième ordre dans la méthode de Runge-Kutta-Nyström,” Acta Fac. Nat. Univ. Comenian. Math., v. 2, 1957, p. 21-24. · Zbl 0087.32504
[8] Kaiser S. Kunz, Numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1957. · Zbl 0079.33601
[9] R. H. Merson, “An operational method for the study of integration processes,” Proceedings of Conference on Data Processing and Automatic Computing Machines at Weapons Research Establishment, Salisbury, South Australia, 1957, paper No. 110.
[10] Z. Kopal, Numerical Analysis, 1st edition, Chapman and Hall, London, 1955, p. 368.
[11] Preston C. Hammer and Jack W. Hollingsworth, Trapezoidal methods of approximating solutions of differential equations, Math. Tables Aids Comput. 9 (1955), 92 – 96. · Zbl 0066.10403
[12] Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, Inc., New York-London, 1962. · Zbl 0112.34901
[13] Thomas Muir, A treatise on the theory of determinants, Revised and enlarged by William H. Metzler, Dover Publications, Inc., New York, 1960.
[14] L. Stoller and D. Morrison, A method for the numerical integration of ordinary differential equations, Math. Tables Aids Comput. 12 (1958), 269 – 272. · Zbl 0093.31001
[15] A. N. Kolmogorov and S. V. Fomin, Elements of the theory of functions and functional analysis. Vol. 1. Metric and normed spaces, Graylock Press, Rochester, N. Y., 1957. Translated from the first Russian edition by Leo F. Boron. · Zbl 0090.08702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.