×

zbMATH — the first resource for mathematics

On the ubiquity of Gorenstein rings. (English) Zbl 0112.26604

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Auslander, M., andO. Goldman: Maximal orders. Trans. Amer. Math. Soc.97, 1-24 (1960). · Zbl 0117.02506 · doi:10.1090/S0002-9947-1960-0117252-7
[2] Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc.95, 466-488 (1960). · Zbl 0094.02201 · doi:10.1090/S0002-9947-1960-0157984-8
[3] ?: Injective dimension in noetherian rings. Trans. Amer. Math. Soc.102, 18-29 (1962). · Zbl 0126.06503 · doi:10.1090/S0002-9947-1962-0138644-8
[4] ?: Torsion free and projective modules. Trans. Amer. Math. Soc.102, 319-327 (1962). · Zbl 0103.02304 · doi:10.1090/S0002-9947-1962-0140542-0
[5] Berger, R.: Über eine Klasse unvergabelter lokaler Ringe. Math. Ann.166, 98-102 (1962). · Zbl 0115.03303 · doi:10.1007/BF01396670
[6] Dade, E. C.: Some indecomposable group representations. Ann. of Math. (to appear). · Zbl 0119.03101
[7] Dieudonne, J.: Remarks on quasi-Frobenius rings. Ill. J. Math12, 346-354 (1958). · Zbl 0101.02701
[8] Gabriel, P.: Objects injectifs dans les catégories abéliennes. Sém. Dubreil 1958/59.
[9] Gorenstein, D.: An arithmetic theory of adjoint plane curves. Trans. Amer. Math. Soc.72, 414-436 (1952). · Zbl 0046.38503 · doi:10.1090/S0002-9947-1952-0049591-8
[10] Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki, May 1957.
[11] Heller, A., andI. Reiner: Representations of cyclic groups in rings of integers. Ann. of Math. (to appear). · Zbl 0119.03004
[12] Jans, J.: Duality in noetherian rings. Proc. Amer. Math. Soc.12, 829-835 (1961). · Zbl 0113.26104 · doi:10.1090/S0002-9939-1961-0137743-9
[13] Jans, J.: On finitely generated modules over noetherian rings. Trans. Amer. Math. Soc. (to appear). · Zbl 0118.04302
[14] Kaplansky, I.: Homological dimension of rings and modules, mimeographed notes. Univ. of Chicago.
[15] Matlis, E.: Injective modules over noetherian rings. Pacific J. Math.8, 511-528 (1958). · Zbl 0084.26601
[16] ?: Observations on noetherian domains of dimension 1. Can. J. Math.13, 569-586 (1961). · Zbl 0102.02901 · doi:10.4153/CJM-1961-046-x
[17] Northcott, D. G., andD. Rees: Principal systems. Quart. J. Math.8, 119-127 (1957). · Zbl 0077.26001 · doi:10.1093/qmath/8.1.119
[18] Rees, D.: The grade of an ideal or module. Proc. Camb. Phil. Soc.53, 28-42 (1957). · Zbl 0079.26602 · doi:10.1017/S0305004100031960
[19] Roquette, P.: Über den Singularitätsgrad von Teilringen in Funktionenkörpern. Math. Z.77, 228-240 (1961). · Zbl 0102.27801 · doi:10.1007/BF01180176
[20] Samuel, P.: Singularités des variétés algébriques. Bull. Soc. Math. de France79, 121-129 (1951).
[21] Serre, J.-P.: Groupes algébriques et corps de classes. Paris: Hermann 1959. · Zbl 0097.35604
[22] Serre, J.-P.: Sur les modules projectifs. Séminaire Dubreil, Nov. 1960/61.
[23] Apéry, R.: La géométrie algébrique. Bull. Soc. Math. France71, 46-66 (1943).
[24] Rosenlicht, M.: Equivalence relations on algebraic curves. Ann. of Math.56, 169-191 (1952). · Zbl 0047.14503 · doi:10.2307/1969773
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.