×

zbMATH — the first resource for mathematics

Examples of non-Gaussian quasi-invariant distributions in Hilbert space. (English) Zbl 0111.32305

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jacob Feldman, Equivalence and perpendicularity of Gaussian processes, Pacific J. Math. 8 (1958), 699 – 708. · Zbl 0084.13001
[2] B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. · Zbl 0056.36001
[3] George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101 – 139. · Zbl 0046.11601 · doi:10.2307/1969423 · doi.org
[4] I. E. Segal, Equivalences of measure spaces, Amer. J. Math. 73 (1951), 275 – 313. · Zbl 0042.35502 · doi:10.2307/2372178 · doi.org
[5] I. E. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12 – 41. · Zbl 0099.12104
[6] -, Foundations of the theory of dynamical systems of infinitely many variables, Mat.-Fys. Medd. Danske. Vid. Selsk. vol. 31 (1959) pp. 1-38.
[7] Shizuo Kakutani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), 214 – 224. · Zbl 0030.02303 · doi:10.2307/1969123 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.