×

zbMATH — the first resource for mathematics

Spaces of Riemann surfaces as bounded domains. (English) Zbl 0106.28501
Bull. Am. Math. Soc. 66, 98-103 (1960); correction ibid. 67, 465-466 (1961).

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lars V. Ahlfors, On quasiconformal mappings, J. Analyse Math. 3 (1954), 1 – 58; correction, 207 – 208. · Zbl 0057.06506
[2] Lars V. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces., Analytic functions, Princeton Univ. Press, Princton, N.J., 1960, pp. 45 – 66. · Zbl 0100.28903
[3] L. V. Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, to appear. · Zbl 0104.29902
[4] Lipman Bers, Quasiconformal mappings and Teichmüller’s theorem, to appear. · Zbl 0100.28904
[5] Lipman Bers, Spaces of Riemann surfaces, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York, 1960, pp. 349 – 361. · Zbl 0083.20501
[6] Henri Cartan, Quotient d’un espace analytique par un groupe d’automorphismes, Algebraic geometry and topology., Princeton University Press, Princeton, N. J., 1957, pp. 90 – 102 (French). A symposium in honor of S. Lefschetz,. · Zbl 0084.07202
[7] K. Kodaira and D. C. Spencer, Existence of complex structure on a differentiable family of deformations of compact complex manifolds, Ann. of Math. (2) 70 (1959), 145 – 166. · Zbl 0124.16503
[8] H. E. Rauch, On the transcendental moduli of algebraic Riemann surfaces, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 42 – 49. · Zbl 0067.30502
[9] Helmut Röhrl, to appear.
[10] Oswald Teichmüller, Extremale quasikonforme Abbildungen und quadratische Differentiale, Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1939 (1940), no. 22, 197 (German). · JFM 66.1252.01
[11] Oswald Teichmüller, Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orientierten Riemannschen Flächen, Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1943 (1943), no. 4, 42 (German). · Zbl 0060.23313
[12] André Weil, Sur les modules des surfaces de Riemann, Séminaire Bourbaki, May, 1958. · Zbl 0084.28102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.