×

zbMATH — the first resource for mathematics

A martingale inequality and the law of large numbers. (English) Zbl 0102.13501

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. D. Brunk, The strong law of large numbers, Duke Math. J. 15 (1948), 181 – 195. · Zbl 0030.20003
[2] Kai Lai Chung, The strong law of large numbers, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 341 – 352.
[3] J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. · Zbl 0053.26802
[4] J. Hájek and A. Rényi, Generalization of an inequality of Kolmogorov, Acta Math. Acad. Sci. Hungar. 6 (1955), 281 – 283 (English, with Russian summary). · Zbl 0067.10701
[5] T. Kawata and M. Udagawa, On the strong law of large numbers, Kōdai Math. Sem. Rep. 3 (1951), 78 – 80. {Volume numbers not printed on issues until Vol. 7 (1955).}. · Zbl 0045.07602
[6] A. Kolmogoroff, Über die Summen durch den Zufall bestimmter unabhängiger Größen, Math. Ann. 99 (1928), no. 1, 309 – 319 (German). · JFM 54.0543.05
[7] -, Sur loi forte des grands nombers, C. R. Acad. Sci. Paris vol. 91 (1930) pp. 910-912. · JFM 56.0445.06
[8] P. Lévy, Théorie de l’addition des variables aléatories, Paris, 1937. · JFM 63.0490.04
[9] M. Loève, Probability theory, New York, 1935.
[10] J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendents, Fund. Math. vol. 29 (1937) pp. 60-90. · Zbl 0016.40901
[11] Yu. V. Prokhorov, On the strong law of large numbers, Izvestiya Akad. Nauk SSSR. Ser. Mat. 14 (1950), 523 – 536 (Russian). · Zbl 0040.07301
[12] J. Ville, Étude critique de la notion de collectif, Paris, 1939. · Zbl 0021.14505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.