zbMATH — the first resource for mathematics

The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. (English. Russian original) Zbl 0095.39202
PMM, J. Appl. Math. Mech. 23, 622-636 (1959); translation from Prikl. Mat. Mekh. 23, 434-444 (1959).

Full Text: DOI
[1] Griffith, A.A., The phenomenon of rupture and flow in solids, phil. trans. roy. soc. A, Vol. 221, (1920)
[2] Orowan, E., Energy criteria of fracture, Welding J. res. suppl., (March 1955)
[3] Irwin, G.R., Analysis of stresses and strains near the end of a crack traversing a plate, J. appl. mech., Vol. 24, No. 3, (1957)
[4] Bueckner, H.F., The propagation of cracks and the energy of elastic deformation, Trans. amer. soc. mech. engs., Vol. 80, No. 6, (1958)
[5] Mott, N.F., Fracture of metals: theoretical considerations, Engineering, Vol. 165, No. 4275, (1948), No. 4276 · Zbl 0029.33603
[6] Frenkel’, Ya.I., Teoriya obratimykh i neobratimykh treshchin v tverdykh telakh, Zh. tekh. fiz., Vol. 22, No. 11, (1952)
[7] Zheltov, Yu.P.; Khristianovich, S.A., O mekhanizme gidravlicheskovo razryva neftenosnove plasta, (), No. 5
[8] Barenblatt, G.I.; Khristianovich, S.A., Ob obrushenii krovli pri gornykh vyrabotkakh, (), No. 11
[9] Barenblatt, G.I., O nekotorykh zadachakh tebrii uprugosti, voznikaiushchikh pri issledovanii mekhanizma gidravlicheskovo razryva neftenosnovo plasta, Pmm, Vol. 20, No. 3, (1956)
[10] Barenblatt, G.I., Ob obrazovanii gorizontal’nykh treshchin pri gidravlicheskom razryve neftenosnovo plasta, (), No. 9
[11] Zheltov, Yu.P., Ob obrazovanii vertikal’nykh treshchin v plaste pri pomoshchi fil’truiushcheisya zhidkosti, (), No. 8
[12] Sneddon, J.D., Fourier transforms, (1951), New York
[13] Sedow, L.I., Metody podobiya i razmernosti v mekhanike, (1957), GITTL Moscow-Leningrad · Zbl 0078.39502
[14] Love, A., Matematicheskaya teoriya uprugosti, (1935), ONTI Moscow-Leningrad
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.