×

zbMATH — the first resource for mathematics

On the construction of sets of mutually orthogonal latin squares and the falsity of a conjecture of Euler. (English) Zbl 0093.31904

Keywords:
statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. W. Rouse Ball, Mathematical Recreations and Essays, The Macmillan Company, New York, 1947. Revised by H. S. M. Coxeter. · JFM 36.0312.03
[2] R. C. Bose, On the construction of balanced incomplete block designs, Ann. Eugenics 9 (1939), 353 – 399.
[3] R. C. Bose, A note on the resolvability of balanced incomplete designs, Sankhyā 6 (1942), 105 – 110. · Zbl 0060.31404
[4] R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhyā 8 (1947), 107 – 166. · Zbl 0038.09601
[5] -, A note on orthogonal arrays, Ann. Math. Statist. vol. 21 (1950) pp. 304-305 (abstract).
[6] -, On the application of finite projective geometry for deriving a certain series of balanced Kirkman arrangements, Bull. Calcutta Math. Soc. Silver Jubilee vol. 51 (1959). · Zbl 0116.11202
[7] R. C. Bose and W. S. Connor, Combinatorial properties of group divisible incomplete block designs, Ann. Math. Statistics 23 (1952), 367 – 383. · Zbl 0047.12902
[8] R. C. Bose, S. S. Shrikhande, and K. N. Bhattacharya, On the construction of group divisible incomplete block designs, Ann. Math. Statistics 24 (1953), 167 – 195. · Zbl 0050.14605
[9] R. C. Bose and S. S. Shrikhande, On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order 4\?+2, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 734 – 737. · Zbl 0085.00902
[10] K. A. Bush, A generalization of a theorem due to MacNeish, Ann. Math. Statistics 23 (1952), 293 – 295. · Zbl 0047.01702
[11] K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Statistics 23 (1952), 426 – 434. · Zbl 0047.01704
[12] O. Eckenstein, Bibliography of Kirkman’s school girl problem, Messenger of Math. vol. 41 (1911-1912) pp. 33-36. · JFM 42.0250.02
[13] L. Euler, Recherches sur une nouvelle espéce des quarres magiques, Verh. zeeuwsch Genoot. Wetenschappen vol. 9 (1782) pp. 85-239.
[14] F. W. Levi, Finite Geometrical Systems, University of Calcutta, Calcutta, 1942. · Zbl 0060.32304
[15] H. F. MacNeish, Das problem der \( 36\) offiziere, Jber. Deutsch. Math. Verein. vol. 30 (1921) pp. 151-153. · JFM 48.0071.01
[16] Harris F. MacNeish, Euler squares, Ann. of Math. (2) 23 (1922), no. 3, 221 – 227. · JFM 49.0041.05
[17] Henry B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13 (1942), 418 – 423. · Zbl 0060.02706
[18] E. T. Parker, Construction of some sets of pairwise orthogonal Latin squares, Abstract 553-67, Notices Amer. Math. Soc. vol. 5 (1958) p. 815.
[19] J. Peterson, Les \( 36\) officers, Ann. of Math. (1901-1902) pp. 413-427.
[20] P. Wernicke, Das problem der \( 36\) offiziere, Jber. Deutsch. Math. Verein. vol. 19 (1910) pp. 264-267. · JFM 41.0259.03
[21] F. Yates, Incomplete randomized blocks, Ann. of Eugen. London vol. 7 (1936) pp. 121-140. · JFM 62.1379.21
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.