×

zbMATH — the first resource for mathematics

Classical Physics as geometry. Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space. (English) Zbl 0078.19106

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Misner, C.W., Revs. modern phys., 29, 497, (1957)
[2] Wheeler, J.A., Annals of physics, 2, 604, (1957)
[3] Rainich, G.Y., Trans. am. math. soc., 27, 106, (1925)
[4] Rainigh, G.Y., The mathematics of relativity, (1950), Wiley New York
[5] Synge, J.L., Principal null-directions defined in space time by an electromagnetic field, (1935), Univ. of Toronto Press Toronto, No. 1 in the University of Toronto Studies, Applied Mathematics Series · Zbl 0012.23102
[6] Synge, J.L., Relativity: the special theory, (), 326 · Zbl 0071.21804
[7] Bonnor, W.B., (), 225
[8] Mariot, Louis, Le champ électromagnetique pur en relativité générale, (April 6, 1957), University of Paris, mimeograph, privately reproduced
[9] Einstein, A., The meaning of relativity, (), 107 · Zbl 0063.01229
[10] Riemann, Bernhard, Habilitationsvorlesung of June 10, 1854 on entry into the philosophical faculty of the university of Göttingen, ueber die hypothesen welche der geometrie zu grunde liegen,, (), Reprinted by
[11] Clifford, Nature, 8, 14, (1873)
[12] Weyl, H., Raum zeit materie, (), 91, (translated by Olaf Helmer) · Zbl 0186.28602
[13] Einstein, A.; Rosen, N., Phys. rev., 48, 73, (1935)
[14] Wheeler, J.A., Phys. rev., 97, 511, (1955)
[15] Darrow, K.K., Physics today, 9, No. 8, 24, (1956)
[16] Dyson, F.; Dyson, F., Advanced quantum mechanics, mimeographed notes, (), 167, See, for example
[17] Infeld, L.; Callaway, J., Acta phys. polonica, Phys. rev., 92, 1567, (1953)
[18] Clifford, W.K.; Clifford, W.K.; Clifford, W.K., Mathematical papers, (), 322, respectively
[19] Cajori, F., Mathematical principles of natural philosophy, (1934), Univ. of California Press Berkeley, revision of Motte’s English translation of I. Newton’s
[20] Fierz, M., Ueber den ursprung und die bedeutung der lehre Isaac Newton’s vom absoluten raum, Gesnerus, 11, 62, (1954)
[21] Patrizzi, F., Nova de universis philosophia…, part IV, pancosmia, book I, de spacio physico, (1593), Meiettus Venice
[22] (), 305-307, Mysore
[23] See also the forthcoming Vol. III of “The Upanishads” (translated by Swami Nikhilananda). Harper, New York.
[24] Schouten, J.A.; Schouten, J.A., Ricci-calculus: an introduction to tensor calculus and its geometrical applications, (), 46, See also footnote 4 of present paper · Zbl 0057.37803
[25] Kelley, John L., General topology, (1955), Van Nostrand New York · Zbl 0066.16604
[26] Pontrjagin, L., Topological groups, (1946), Princeton Univ. Press Princeton, Chapter II · JFM 62.0443.02
[27] Aleksandrov, P.S., (), Chapter I
[28] de Rham, Georges, Variétés différentiables, (), 1 · Zbl 0065.32401
[29] Møller, C.; Landau, L.; Lifshitz, E., The classical theory of fields, (), 336
[30] Milnor, John, Ann. math., 64, 399, (1956)
[31] Cartan, E.; Chevalley, C.; Hodge, W.V.D.; Lichnerowicz, A.; de Rham, G., Variétés différentiables, (1955), Oxford Univ. Press Paris, Part 2, Chapter 1
[32] Eilenberg, S.; Steenrod, N., ()
[33] Seifert, H.; Threlfall, W., Variationsrechnung im grossen, (), 16-21, Reprinted by · JFM 64.0499.02
[34] Lefschetz, S., Introduction to topology, (1949), Princeton Univ. Press Princeton · Zbl 0041.51801
[35] Seifert, H.; Threlfall, W., Lehrbuch der topologie, (1947), Chelsea New York, reprinted by · Zbl 0009.08601
[36] Serre, J.P., Ann. math., 54, 439-441, (1951)
[37] Hodge, W.V.D.; Hodge, W.V.D.; de Rham, G., Variétés différentiables: formes, courants, formes harmoniques, (), 100, (1955), Cambridge Univ. Press Paris, Chapter 4 · Zbl 0065.32401
[38] Goursat, E.; Riesz, M.; Duff, G.F., (), Acta math., Can. J. math., 5, 57-223, (1953), See also
[39] Raychaudhuri, A.; Raychaudhuri, A.; Komar, A., Phys. rev., Phys. rev., Phys. rev., 104, 544, (1956)
[40] Foures-Bruhat, Y., Acta math., 88, 141, (1952)
[41] see also {\scDuff}, ref. 37.
[42] Landau, L.; Lifshitz, E., The classical theory of fields, (), 320, translated by M. Hamermesh · Zbl 0043.19803
[43] Lichnerowicz, A.; Lichnerowicz, A.; Lichnerowicz, A., Problèmes globaux en Méchanique relativiste, J. math. pure appl., Helv. phys. acta, Suppl. IV, 9, 176, (1956), Hermann Paris · JFM 65.1046.04
[44] Foures-Bruhat, Y., Acta math., 88, 141, (1952)
[45] Foures-Bruhat, Y., J. rational mech. anal., 4, 951, (1956)
[46] Lemaitre, G.; Einstein, A.; Rosen, N.; Synge, J.L.; Landau, L.; Lifschitz, E., The classical theory of fields, (), 48, 310, (1935)
[47] Stellmacher, K.; Stellmacher, K., Math. ann., Math. ann., 115, 740, (1938)
[48] Reissner, K.; Nordstrom, L., (), 50, 4, 1238, (1916)
[49] {\scMorton R. Dubman}, senior thesis submitted to Princeton University in partial fulfillment of the requirements for the A.B. degree, 1957 (unpublished).
[50] Lindquist, R.W.; Wheeler, J.A., Revs. modern phys., 29, 432, (1957)
[51] Lichnerowicz, A., J. math. pure appl., 23, 9, 37, (1944)
[52] Wheeler, J.A.; Power, E.; Wheeler, J.A., Phys. rev., Revs. modern phys., 29, 480, (1957)
[53] Einstein, A.; Infeld, L.; Hoffman, B., Ann. math., 39, 65, (1938)
[54] Infeld, L.; Schild, A., Revs. modern phys., 21, 408, (1949)
[55] Chase, D.M.; Infeld, L., Phys. rev., Revs. modern phys., 29, 398, (1957), See also
[56] Willem, V.R.; Malkus, Phys. rev., 81, 315, (1951)
[57] Pauli, W.; Weyl, H.; Weyl, H.; Weyl, H.; Bach, R.; Lanczos, C.; Lanczos, C.; Lanczos, C.; Lanczos, C., Physik Z., Math-seitz., Ann. phys., Physik Z., Math. Z., Phys. rev., Phys. rev., Ann. math., Revs. modern phys., 21, 4, 497, (1949)
[58] {\scS. Lie and F. Engel}, “Theorie der Transformationsgruppen,” 3 vols. Teubner, Leipzig, 1888-1893.
[59] Power, E.; Wheeler, J.A., Revs. modern phys., 29, 480, (1957)
[60] Everett, H.; Misner, C.; Wheeler, J.A.; Wheeler, J.A., Revs. modern phys., Revs. modern phys., Revs. modern phys., Annals of physics, 2, 604, (1957)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.