×

zbMATH — the first resource for mathematics

Complex analytic connections in fibre bundles. (English) Zbl 0078.16002

Keywords:
Topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84 (1956), 307 – 317. · Zbl 0072.18101
[2] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414 – 452. · Zbl 0084.17305 · doi:10.1112/plms/s3-7.1.414 · doi.org
[3] André Blanchard, Variétés kählériennes et espaces fibrés, C. R. Acad. Sci. Paris 234 (1952), 284 – 286 (French). · Zbl 0049.40103
[4] André Blanchard, Espaces fibrés kählériens compacts, C. R. Acad. Sci. Paris 238 (1954), 2281 – 2283 (French). · Zbl 0055.42101
[5] H. Cartan and J.-P. Serre, Seminaire E.N.S., 1953-1954.
[6] Shiing-shen Chern, Differential geometry of fiber bundles, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952, pp. 397 – 411.
[7] P. Dolbeault, Thèse (to appear in Ann. of Math.).
[8] A. Grothendieck, A general theory of fibre spaces with structure sheaf, University of Kansas, Report No. 4, 1955.
[9] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). · Zbl 0101.38301
[10] Shigeo Nakano, Tangential vector bundle and Todd canonical systems of an algebraic variety, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 29 (1955), 145 – 149. · Zbl 0068.34501
[11] Shigeo Nakano, On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955), 1 – 12. · Zbl 0068.34403 · doi:10.2969/jmsj/00710001 · doi.org
[12] Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197 – 278 (French). · Zbl 0067.16201 · doi:10.2307/1969915 · doi.org
[13] -, Un théorème de dualité, Comm. Math. Helv. vol. 29 (1955) pp. 9-26. · Zbl 0067.16101
[14] I. M. Singer, (to appear).
[15] J. A. Todd, Invariant and covariant systems on an algebraic variety, Proc. London Math. Soc. (2) 46 (1940), 199 – 230. · Zbl 0022.39201 · doi:10.1112/plms/s2-46.1.199 · doi.org
[16] -, The geometrical invariants of algebraic loci, Proc. London Math. Soc. (2) vol. 45 (1938) pp. 410-424. · Zbl 0061.32908
[17] A. Weil, Generalization de fonctions abeliennes, J. Math. Pures Appl. vol. 17 (1938) pp. 47-87. · JFM 64.0361.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.