×

zbMATH — the first resource for mathematics

An outline of the theory of pseudoanalytic functions. (English) Zbl 0072.07703

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shmuel Agmon and Lipman Bers, The expansion theorem for pseudo-analytic functions, Proc. Amer. Math. Soc. 3 (1952), 757 – 764. · Zbl 0047.32101
[2] L. Ahlfors, On quasi-conformal mappings, Journal d’Analyse Mathématique vol. 4 (1954) pp. 1-58. · Zbl 0057.06506
[3] E. Beltrami, Sulle funzioni potenziali di sistemi simmetrici intorno ad un asse, Opere matematice, Vol. 3, Milano, 1911, pp. 115-128. · JFM 10.0663.01
[4] E. Beltrami, Sulle teoria delle funzioni potenziali simmetriche, ibid., pp. 349-377. · JFM 13.0727.01
[5] P. W. Berg, On the existence of Helmholtz flows of a compressible fluid, Dissertation, New York University, 1953.
[6] Stefan Bergman, Functions satisfying certain partial differential equations of elliptic type and their representation, Duke Math. J. 14 (1947), 349 – 366. · Zbl 0029.39803
[7] Stefan Bergman, Linear operators in the theory of partial differential equations, Trans. Amer. Math. Soc. 53 (1943), 130 – 155. · Zbl 0063.00310
[8] Stefan Bergman, A formula for the stream function of certain flows, Proc. Nat. Acad. Sci. U. S. A. 29 (1943), 276 – 281. · Zbl 0063.00309
[9] Lipman Bers, The expansion theorem for sigma-monogenic functions, Amer. J. Math. 72 (1950), 705 – 712. · Zbl 0039.08701 · doi:10.2307/2372285 · doi.org
[10] Lipman Bers, On the continuation of a potential gas flow across the sonic line, Tech. Notes Nat. Adv. Comm. Aeronaut., 1950 (1950), no. 2058, 58. · Zbl 0039.08701
[11] Lipman Bers, Partial differential equations and generalized analytic functions. II, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 42 – 47. · Zbl 0042.08803
[12] Lipman Bers, Theory of pseudo-analytic functions, Institute for Mathematics and Mechanics, New York University, New York, 1953. · Zbl 0051.31603
[13] Lipman Bers, Univalent solutions of linear elliptic systems, Comm. Pure Appl. Math. 6 (1953), 513 – 526. · Zbl 0051.31701 · doi:10.1002/cpa.3160060407 · doi.org
[14] Lipman Bers, Non-linear elliptic equations without non-linear entire solutions, J. Rational Mech. Anal. 3 (1954), 767 – 787. · Zbl 0056.32101
[15] L. Bers, Functional-theoretical properties of solutions of partial differential equations of elliptic type, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N. J., 1954, pp. 69 – 94. · Zbl 0057.08602
[16] Lipman Bers, Existence and uniqueness of a subsonic flow past a given profile, Comm. Pure Appl. Math. 7 (1954), 441 – 504. · Zbl 0058.40601 · doi:10.1002/cpa.3160070303 · doi.org
[17] Lipman Bers, Local behavior of solutions of general linear elliptic equations, Comm. Pure Appl. Math. 8 (1955), 473 – 496. · Zbl 0066.08101 · doi:10.1002/cpa.3160080404 · doi.org
[18] Lipman Bers, Local theory of pseudoanalytic functions, Lectures on functions of a complex variable, The University of Michigan Press, Ann Arbor, 1955, pp. 213 – 244. · Zbl 0068.06501
[19] Lipman Bers, Remark on an application of pseudo-analytic functions, Amer. J. Math. 78 (1956), 486 – 496. · Zbl 0074.30004 · doi:10.2307/2372668 · doi.org
[20] Lipman Bers, Partial differential equations and pseudoanalytic functions on Riemann surfaces, Contributions to the theory of Riemann surfaces, Annals of Mathematics Studies, no. 30, Princeton University Press, Princeton, N. J., 1953, pp. 157 – 165. · Zbl 0053.05201
[21] Lipman Bers and Abe Gelbart, On a class of differential equations in mechanics of continua, Quart. Appl. Math. 1 (1943), 168 – 188. · Zbl 0063.00340
[22] Lipman Bers and Abe Gelbart, On a class of functions defined by partial differential equations, Trans. Amer. Math. Soc. 56 (1944), 67 – 93. · Zbl 0061.15905
[23] Lipman Bers and Abe Gelbart, On generalized Laplace transformations, Ann. of Math. (2) 48 (1947), 342 – 357. · Zbl 0029.40003 · doi:10.2307/1969175 · doi.org
[24] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, Edizioni Cremonese, Roma, 1955, pp. 111 – 140.
[25] L. Bers and L. Nirenberg, On linear and non-linear elliptic boundary value problems in the plane, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, Edizioni Cremonese, Roma, 1955, pp. 141 – 167.
[26] William M. Boothby, The topology of the level curves of harmonic functions with critical points, Amer. J. Math. 73 (1951), 512 – 538. · Zbl 0044.31802 · doi:10.2307/2372305 · doi.org
[27] Renato Caccioppoli, Fondamenti per una teoria generale delle funzioni pseudo-analitiche di una variabile complessa. I, II, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 13 (1952), 197 – 204, 321 – 329 (Italian). · Zbl 0048.06001
[28] T. Carleman, Sur les systèmes linéaires aux dérivées partielles du premier ordre à deux variables, C. R. Acad. Sci. Paris vol. 197 (1933) pp. 471-474. · JFM 59.0469.03
[29] T. Carleman, Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendentes, Arkiv för Matematik, Astronomi och Fysik vol. 26B No. 17 (1939) pp. 1-9. · Zbl 0022.34201
[30] Hsiao-li Chang, Approximately analytic functions of bounded type and boundary behaviour of solutions of elliptic partial differential equations, Acta Math. Sinica 3 (1953), 101 – 132 (Chinese, with English summary). · Zbl 0100.07701
[31] Joaquin B. Diaz, On a class of partial differential equations of even order, Amer. J. Math. 68 (1946), 611 – 659. · Zbl 0061.23807 · doi:10.2307/2371788 · doi.org
[32] Avron Douglis, A function-theoretic approach to elliptic systems of equations in two variables, Comm. Pure Appl. Math. 6 (1953), 259 – 289. · Zbl 0050.31901 · doi:10.1002/cpa.3160060205 · doi.org
[33] Avron Douglis, Uniqueness in Cauchy problems for elliptic systems of equations, Comm. Pure Appl. Math. 6 (1953), 291 – 298. · Zbl 0050.31902 · doi:10.1002/cpa.3160060206 · doi.org
[34] Avron Douglis, Function-theoretic properties of certain elliptic systems of first-order linear equations, Lectures on functions of a complex variable, The University of Michigan Press, Ann Arbor, 1955, pp. 335 – 340. · Zbl 0067.32502
[35] A. Gelbart, On a function-theory method for obtaining potential flow patterns of a compressible fluid, N.A.C.A. ARR No. 3G27, 1943. · Zbl 0063.01564
[36] J. J. Gergen and F. G. Dressel, Mapping by \?-regular functions, Duke Math. J. 18 (1951), 185 – 210. · Zbl 0042.08901
[37] J. J. Gergen and F. G. Dressel, Mapping for elliptic equations, Trans. Amer. Math. Soc. 77 (1954), 151 – 178. · Zbl 0058.08403
[38] J. J. Gergen and F. G. Dressel, Uniqueness for \?-regular mapping, Duke Math. J. 19 (1952), 435 – 444. · Zbl 0047.32202
[39] Philip Hartman and Aurel Wintner, On the third fundamental form of a surface, Amer. J. Math. 75 (1953), 298 – 334. · Zbl 0050.37805 · doi:10.2307/2372455 · doi.org
[40] Philip Hartman and Aurel Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449 – 476. · Zbl 0052.32201 · doi:10.2307/2372496 · doi.org
[41] Philip Hartman and Aurel Wintner, Umbilical points and \?-surfaces, Amer. J. Math. 76 (1954), 502 – 508. · Zbl 0055.39601 · doi:10.2307/2372698 · doi.org
[42] Philip Hartman and Aurel Wintner, On the local behavior of solutions of non-parabolic partial differential equations. II. The uniqueness of the Green singularity, Amer. J. Math. 76 (1954), 351 – 361. · Zbl 0055.32403 · doi:10.2307/2372577 · doi.org
[43] Erhard Heinz, Über die Eindeutigkeit beim Cauchyschen Anfangswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nachr. Akad. Wiss. Göttingen. IIa. 1955 (1955), 1 – 12 (German). · Zbl 0067.07503
[44] E. Hopf, Elementare Bemerkungen über Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Preuss. Akad. Wiss. Sitzungsber. vol. 19 (1927) pp. 147-152. · JFM 53.0454.02
[45] Fritz John, The fundamental solution of linear elliptic differential equations with analytic coefficients, Comm. Pure Appl. Math. 3 (1950), 273 – 304. · Zbl 0041.06203 · doi:10.1002/cpa.3160030305 · doi.org
[46] S. Kakutani, On the family of pseudo-regular functions, Tôhoku Math. J. vol. 43 (1937) pp. 211-215. · Zbl 0018.26206
[47] Wilfred Kaplan, Topology of level curves of harmonic functions, Trans. Amer. Math. Soc. 63 (1948), 514 – 522. · Zbl 0032.07103
[48] Adolph Kriszten, Hyperkomplexe und pseudo-analytische Funktionen, Comment. Math. Helv. 26 (1952), 6 – 35 (German). · Zbl 0046.08901 · doi:10.1007/BF02564288 · doi.org
[49] M. Lavrent\(^{\prime}\)ev, A general problem of the theory of quasi-conformal representation of plane regions, Mat. Sbornik N.S. 21(63) (1947), 285 – 320 (Russian).
[50] M. A. Lavrent\(^{\prime}\)ev, A fundamental theorem of the theory of quasi-conformal mapping of plane regions, Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948), 513 – 554 (Russian).
[51] C. Y. Lee, Similarity principle with boundary conditions for pseudo-analytic functions, Duke Math. J. 23 (1956), 157 – 163. · Zbl 0070.09603
[52] Hans Lewy, On differential geometry in the large. I. Minkowski’s problem, Trans. Amer. Math. Soc. 43 (1938), no. 2, 258 – 270. · Zbl 0018.17403
[53] M. A. Lukomskaya, On a generalization of a class of analytic functions, Doklady Akad. Nauk SSSR (N.S.) 73 (1950), 885 – 888 (Russian).
[54] M. A. Lukomskaya, On cycles of systems of linear homogeneous differential equations, Mat. Sbornik N.S. 29(71) (1951), 551 – 558 (Russian).
[55] M. A. Lukomskaya, Solution of some systems of partial differential equations by means of inclusion in a cycle, Akad. Nauk SSSR. Prikl. Mat. Meh. 17 (1953), 745 – 747 (Russian).
[56] A. Miškis, Uniqueness of the solution of Cauchy’s problem, Uspehi Matematičeskih Nauk vol. 3 (1948) pp. 3-46 (Russian).
[57] Cathleen S. Morawetz, On the non-existence of continuous transonic flows past profiles. I, Comm. Pure Appl. Math. 9 (1956), 45 – 68. · Zbl 0070.20206 · doi:10.1002/cpa.3160090104 · doi.org
[58] Cathleen S. Morawetz, Uniqueness for the analogue of the Neumann problem for mixed equations, Michigan Math. J. 4 (1957), 5 – 14. · Zbl 0077.09602
[59] Charles B. Morrey Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126 – 166. · Zbl 0018.40501
[60] Marston Morse, Topological Methods in the Theory of Functions of a Complex Variable, Annals of Mathematics Studies, no. 15, Princeton University Press, Princeton, N. J., 1947. · Zbl 0041.39604
[61] M. Morse and M. Heins, Topological methods in the theory of functions of a complex variable, Ann. of Math. vol. 46 (1945) pp. 600-624, 625-666; vol. 47 (1946) pp. 233-274. · Zbl 0063.04118
[62] Marston Morse and Maurice Heins, Deformation classes of meromorphic functions and their extensions to interior transformations, Acta Math. 79 (1947), 51 – 103. · Zbl 0029.29202 · doi:10.1007/BF02404694 · doi.org
[63] M. Morse, and J. A. Jenkins, Multiply-valued harmonic functions and their conjugates on arbitrary Riemann surfaces, Lectures on Functions of a Complex Variable, Michigan University Press, 1955, pp. 123-186.
[64] Claus Müller, On the behavior of the solutions of the differential equation \Delta \?=\?(\?,\?) in the neighborhood of a point, Comm. Pure Appl. Math. 7 (1954), 505 – 515. · Zbl 0056.32201 · doi:10.1002/cpa.3160070304 · doi.org
[65] I. G. Petrovskiĭ, On some problems of the theory of partial differential equations, Uspehi Matem. Nauk (N.S.) 1 (1946), no. 3 – 4(13 – 14), 44 – 70 (Russian).
[66] Albert Pfluger, Quasikonforme Abbildungen und logarithmische Kapazität, Ann. Inst. Fourier Grenoble 2 (1950), 69 – 80 (1951) (German). · Zbl 0042.31701
[67] E. Picard, Sur une système des équations aux dérivées partielles, C. R. Acad. Sci. Paris vol. 112 (1891) pp. 685-688. · JFM 23.0401.01
[68] E. Picard, Sur une généralization des équations de la théorie des functions d’une variable complexe, ibid., pp. 1399-1403. · JFM 23.0411.01
[69] G. N. Položiĭ, On \?-analytic functions of a complex variable, Doklady Akad. Nauk SSSR (N.S.) 58 (1947), 1275 – 1278 (Russian).
[70] G. N. Položiĭ, A generalization of Cauchy’s integral formula, Mat. Sbornik N.S. 24(66) (1949), 375 – 384 (Russian).
[71] G. N. Položiĭ, Singular points and calculation of \?-analytic functions of a complex variable, Doklady Akad. Nauk SSSR (N.S.) 60 (1948), 769 – 772 (Russian).
[72] G. N. Položiĭ, The theorem on preservation of domain for certain elliptic systems of differential equations and its applications, Mat. Sbornik N.S. 32(74) (1953), 485 – 492.
[73] M. H. Protter, Generalized spherical harmonics, Trans. Amer. Math. Soc. 63 (1948), 314 – 341. · Zbl 0032.27602
[74] M. H. Protter, The periodicity problem in the theory of pseudoanalytic functions, to appear in Ann. of Math. · Zbl 0072.29803
[75] B. V. Šabat, Cauchy’s theorem and formula for quasi-conformal mappings of linear classes, Doklady Akad. Nauk SSSR (N.S.) 69 (1949), 305 – 308 (Russian).
[76] Z. Schapiro, Sur l’existence des représentations quasiconformes, C. R. (Doklady) Acad. Sci. URSS (N.S.) 30 (1941), 690 – 692 (French). · JFM 67.0290.01
[77] L. Sobrero, Theorie der ebenen Elastizitaet unter Benutzung eines Systems hyperkomplexer Zahlen, Hamburger Mathematische Einzelschriften, Leipzig, 1934. · Zbl 0011.03104
[78] S. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris, Gauthier-Villars, 1938. · JFM 64.0309.01
[79] O. Teichmüller, Untersuchungen über konforme und quasikonforme Abbildungen, Deutsche Mathematik vol. 3 (1938) pp. 621-678. · Zbl 0020.23801
[80] I. N. Vekua, Novye metody rešeniya èlliptičeskih uravneniĭ, OGIZ, Moscow-Leningrad,], 1948 (Russian).
[81] I. N. Vekua, Systems of differential equations of the first order of elliptic type and boundary value problems, with an application to the theory of shells, Mat. Sbornik N. S. 31(73) (1952), 217 – 314 (Russian).
[82] I. N. Vekua, On a property of solutions of a generalized system of Cauchy-Riemann equations, Soobšč. Akad. Nauk Gruzin. SSR 14 (1953), 449 – 453 (Russian). · Zbl 0053.37804
[83] I. N. Vekua, The general representation of functions of two independent variables admitting a derivative in the sense of S. L. Sobolev and the problem of primitives, Doklady Akad. Nauk SSSR (N.S.) 89 (1953), 773 – 775 (Russian). · Zbl 0050.30801
[84] I. N. Vekua, On certain properties of solutions of a system of equations of elliptic type, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), 181 – 184 (Russian).
[85] Alexander Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20 – 38. · Zbl 0053.25303
[86] G. T. Whyburn, Introductory topological analysis, Lectures on functions of a complex variable, The University of Michigan Press, Ann Arbor, 1955, pp. 1 – 14.
[87] Nachman Aronszajn, Sur l’unicité du prolongement des solutions des équations aux dérivées partielles elliptiques du second ordre, C. R. Acad. Sci. Paris 242 (1956), 723 – 725 (French). · Zbl 0074.31203
[88] Lipman Bers, Formal powers and power series, Comm. Pure Appl. Math. 9 (1956), 693 – 711. · Zbl 0072.29802 · doi:10.1002/cpa.3160090405 · doi.org
[89] A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85 – 139. · Zbl 0047.10201 · doi:10.1007/BF02392130 · doi.org
[90] Philip Hartman and Aurel Wintner, On the local behavior of solutions of non-parabolic partial differential equations. III. Approximations by spherical harmonics, Amer. J. Math. 77 (1955), 453 – 474. · Zbl 0066.08001 · doi:10.2307/2372634 · doi.org
[91] E. M. Landis, On some properties of solutions of elliptic equations, Dokl. Akad. Nauk SSSR (N.S.) 107 (1956), 640 – 643 (Russian). · Zbl 0075.28201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.