×

zbMATH — the first resource for mathematics

Tensor algebras over Hilbert spaces. I. (English) Zbl 0070.34003

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to \?\(_{2}\) over the space \?, Duke Math. J. 14 (1947), 99 – 107. · Zbl 0029.40002
[2] J. M. Cook, The mathematics of second quantization, Trans. Amer. Math. Soc. 74 (1953), 222 – 245. · Zbl 0052.22701
[3] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford, at the Clarendon Press, 1947. 3d ed. · Zbl 0030.04801
[4] Richard P. Feynman, An operator calculus having applications in quantum electrodynamics, Physical Rev. (2) 84 (1951), 108 – 128. · Zbl 0044.23304
[5] K. O. Friedrichs, Mathematical aspects of the quantum theory of fields, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1953. · Zbl 0052.44504
[6] Shizuo Kakutani, Determination of the spectrum of the flow of Brownian motion, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 319 – 323. · Zbl 0038.29105
[7] F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116 – 229. · Zbl 0014.16101 · doi:10.2307/1968693 · doi.org
[8] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401 – 457. · Zbl 0051.34201 · doi:10.2307/1969729 · doi.org
[9] I. E. Segal, Abstract probability spaces and a theorem of Kolmogoroff, Amer. J. Math. 76 (1954), 721 – 732. · Zbl 0056.12301 · doi:10.2307/2372714 · doi.org
[10] M. H. Stone, On one-parameter unitary groups in Hilbert space, Ann. of Math. (2) 33 (1932), no. 3, 643 – 648. · Zbl 0005.16403 · doi:10.2307/1968538 · doi.org
[11] H. Weyl, The classical groups, Princeton, 1939. · JFM 65.0058.02
[12] -, Gruppentheorie und Quantenmechanik, 2d ed., Leipzig, 1931.
[13] Norbert Wiener, The Homogeneous Chaos, Amer. J. Math. 60 (1938), no. 4, 897 – 936. · Zbl 0019.35406 · doi:10.2307/2371268 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.