zbMATH — the first resource for mathematics

Inductive limit and infinite direct product of operator algebras. (English) Zbl 0065.34903

PDF BibTeX Cite
Full Text: DOI
[1] J. DIXMIER, Formes lineaires sur un anneau d’operateurs, Bull. Soc. Math. France, Vol 81(1953), pp. 9-39. · Zbl 0050.11501
[2] E. L. GRIFFIN, Some contributions to the theory of rings of operators, Trans Amer. Math Soc., Vol. 75(1953), pp.471-504. JSTOR: · Zbl 0051.34302
[3] S. KAKUTANI, Notes on infinite product measure spaces, II, Proc. Imp. Acad Tokyo Vol. 19(1943), pp.184-188. · Zbl 0061.09701
[4] I. KAPLANSKY, Normed algebras, Duke Math. Journ., Vol. 16(1949), pp.399-418 · Zbl 0033.18701
[5] Y. MISONOU, On the direct-product of W*-algebras, this journal Vol.6(1954), pp. 189-204, · Zbl 0057.34201
[6] F. J. MURRAY AND J. VON NEUMANN, On rings of operators I, Ann. of Math., Vol. 37(1936), pp. 116-229. Zentralblatt MATH: JSTOR: links.jstor.org · Zbl 0014.16101
[7] F. J. MURRAY AND J. VON NEUMANN, On rings of operators IV, Ann. of Math Vol. 44(1943), pp.716-808. JSTOR: · Zbl 0060.26903
[8] J. VON NEUMANN, On infinte direct products, Compositio Mathematica, Vol. (1938), pp 1-77. · Zbl 0019.31103
[9] R. PALLU DE LA BARRIERE, Sur les algebres d’operateurs dans les espace hilbertiens, Bull. Soc. Math. France, 82(1954), pp. 1-52. · Zbl 0055.33903
[10] I. E. SEGAL, Abstraot drobability spaces and a theorem of Kolmogoroff, Amer Journ. Math. Vol. 76(1954), pp.721-732. JSTOR: · Zbl 0056.12301
[11] A. L. SHIELDS, Measure on a projective limit, Bull. Amer. Math. Soc., Vol. 6 (1954), p.52.
[12] Z. TAKEDA, On the representations of operator algebras, Proc. Japan Acad., Vol. 30(1954), pp.299-304. · Zbl 0057.09801
[13] Z. TAKEDA, On the representations of operator algebras, II, this journal, Vol. (1954), pp.212-219. · Zbl 0057.34202
[14] T. TURUMARU, On the direct-product of operator algebras, I. II, III, thi journal, Vol. 4(1952), pp 242-251; Vol. 5(1953), pp. 1-7 and Vol. 6(1954), pp. 208-211. · Zbl 0049.08701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.