×

zbMATH — the first resource for mathematics

Crystal statistics. I: A two-dimensional model with an order-disorder transition. (English) Zbl 0060.46001

MSC:
82B05 Classical equilibrium statistical mechanics (general)
82D30 Statistical mechanical studies of random media, disordered materials (including liquid crystals and spin glasses)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Moser, Physik. Zeits. 37 pp 737– (1936)
[2] W. H. Keesom, Zeits. f. tech. Physik 15 pp 515– (1934)
[3] H. G. Smith, Rev. Mod. Phys. 7 pp 237– (1935) · Zbl 0012.32901 · doi:10.1103/RevModPhys.7.237
[4] H. Klinkhardt, Ann. d. Physik 84 pp 167– (1927) · doi:10.1002/andp.19273891711
[5] W. H., Physica 2 pp 557– (1935) · doi:10.1016/S0031-8914(35)90128-8
[6] J. Satterly, Rev. Mod. Phys. 8 pp 347– (1938) · doi:10.1103/RevModPhys.8.347
[7] K. Darrow, Rev. Mod. Phys. 12 pp 257– (1940) · Zbl 0024.23704 · doi:10.1103/RevModPhys.12.257
[8] E. Montroll, J. Chem. Phys. 9 pp 706– (1941) · doi:10.1063/1.1750981
[9] K. Herzfeld, J. Chem. Phys. 2 pp 38– (1934) · doi:10.1063/1.1749355
[10] E. Ising, Zeits. f. Physik 31 pp 253– (1925) · doi:10.1007/BF02980577
[11] R. Peierls, Proc. Camb. Phil. Soc. 32 pp 471– (1936) · JFM 62.0997.04 · doi:10.1017/S0305004100019162
[12] R. Peierls, Proc. Camb. Phil. Soc. 32 pp 477– (1936) · Zbl 0014.33604 · doi:10.1017/S0305004100019174
[13] H. A. Kramers, Phys. Rev. 60 pp 252– (1941) · Zbl 0027.28505 · doi:10.1103/PhysRev.60.252
[14] S. B. Frobenius, Preuss. Akad. Wiss. pp 514– (1909)
[15] R. Oldenberger, Duke Math. J. 6 pp 357– (1940) · Zbl 0023.19702 · doi:10.1215/S0012-7094-40-00627-5
[16] E. N. Lassettre, J. Chem. Phys. 9 pp 747– (1941) · doi:10.1063/1.1750835
[17] F. Klein, in: Vorlesungen über Nicht-Euklidische Geometrie (1928)
[18] F. Zernike, Physica 7 pp 565– (1938) · doi:10.1016/S0031-8914(40)90008-8
[19] E. Montroll, J. Chem. Phys. 10 pp 61– (1942) · doi:10.1063/1.1723622
[20] E. T. Whitaker, in: Modern Analysis (1927)
[21] E. Jahnke, in: Tables of Functions (1933)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.