×

zbMATH — the first resource for mathematics

Stochastic processes and statistical inference. (English) Zbl 0058.35501

Keywords:
statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Ambrose: (1) On measurable stochastic processes, Trans. Amer. Math. Soc., 1940. · JFM 66.0620.04
[2] S. Banach: (1) Théorie des opérations linéaires Warsaw, 1933.
[3] R. C. Cameron andW. T. Martin: (1) The behaviour of measure and measurability under change of scale in Wiener, space, Bull. Amer. Math. Soc., 1947. · Zbl 0032.41801
[4] H. Cramér: (1) Random variables and probability distributions, Cambridge tracts in Math., Cambridge, 1937. · JFM 63.1080.01
[5] H. Cramér: (2) On the theory of stationary random processes, Ann. of Math., 1940. · JFM 66.0623.02
[6] H. Cramér: (3) On harmonic analysis in certain functional spaces, Arkiv f. Mat. Astr. Fys., 1942. · JFM 68.0237.04
[7] –: (4) Mathematical Methods of Statistics, Princeton Univ. Press, Princeton, 1946. · Zbl 0063.01014
[8] J. L. Doob: (1) Stochastic processes depending on a continuous parameter Trans. Amer. Math. Soc., 1937.
[9] J. L. Doob: (2) Stochastic processes with an integral-valued parameter, Trans. Amer. Math. Soc., 1938. · JFM 64.0532.03
[10] J. L. Doob: (3) The law of large numbers for continuous stochastic processes, Duke Math. Jour., 1940. · JFM 66.0621.01
[11] J. L. Doob: (4) The Brownian movement and stochastic equations, Ann. of Math., 1942.
[12] J. L. Doob: (5) The elementary Gaussian processes, Ann. of Math. Stat., 1944. · Zbl 0060.28907
[13] J. L. Doob andW. Ambrose: (1) On the two formulations of the theory of stochastic processes depending upon a continuous parameter, Ann. of Math., 1940. · Zbl 0025.19804
[14] H. A. Einstein: (1) Der Geschiebetrieb als Wahrscheinlichkeitsproblem, Dissert., Zürich, 1937.
[15] U. Grenander: (1) Stochastic processes and integral equations, Arkiv för Mat., 1949. · Zbl 0038.29103
[16] O. Hanner: (1) Deterministic and non-deterministic, stationary stochastic processes, Arkiv för Mat., 1949.
[17] E. Hopf: (1) Ergodentheorie, Ergebnisse der Math., Vol. 5. No 2, Berlin, 1937. · JFM 63.0786.07
[18] K. Îto: (1) On the ergodicity of a certain stationary process, Proc. Imp. Acad. Tokyo, Vol. XX, 1944. · Zbl 0060.29002
[19] James, Nichols, Phillips: (1) Theory of servomechanisms, New York, 1947.
[20] M. Kac andA. J. F. Siegert: (1) An explicit representation of a stationary Gaussian process, Ann. of Math. Stat., 1947. · Zbl 0033.38501
[21] K. Karhunen: (1) Zur Spektraltheorie stochastischer Prozesse, Ann. Ac. Sci. Fennicae, A I, 34, Helsinki, 1946. · Zbl 0063.03144
[22] K. Karhunen: (2) Lineare Transformationen stationärer stochastischer Prozesse, X Skand. Mat. Kongr. København, 1946. · Zbl 0063.03144
[23] K. Karhunen: (3) Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Ac. Sci. Fennicae, A I 37, Helsinki, 1947. · Zbl 0030.16502
[24] K. Karhunen: (4) Über die Struktur stationärer zufälliger Funktionen, Arkiv för Mat., 1949.
[25] M. G. Kendall: (1) The advanced theory of statistics, I, II, London, 1943, 1946.
[26] A. Khintchine: (1) Korrelationstheorie der stationären stochastischen Prozesse, Math. Ann., 1934. · Zbl 0008.36806
[27] A. Kolmogoroff: (1) Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Math., Vol. 2, No 3, Berlin, 1933. · JFM 59.1152.03
[28] P. Lévy: (1) Théorie de l’addition des variables aléatoires, Paris, 1937.
[29] O. Lundberg: (1) On random processes and their application to sickness and accident statistics, Thesis, Stockholm, 1940. · Zbl 0063.03678
[30] R. Paley andN. Wiener: (1) Fourier transforms in the complex domain, New York, 1934. · Zbl 0011.01601
[31] B. J. Pettis: (1) On integration in vector spaces, Trans. Amer. Math. Soc., 1938. · Zbl 0019.41603
[32] S. Saks: (1) Theory of the integral, Warsaw, 1937.
[33] A. Wald: (1) Asymptotic properties of the maximum likelihood estimate of an unknown parameter of a discrete stochastic process, Ann. of Math. Stat., 1948. · Zbl 0032.17301
[34] N. Wiener: (1) Extrapolation, interpolation and smoothing of stationary time series, New York 1949. · Zbl 0036.09705
[35] J. Wolfowitz: (1) The efficiency of sequential estimates and Wald’s equation for sequential processes, Ann. of Math. Stat., 1947. · Zbl 0032.04203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.