×

Tables of integral transforms. Vol. I. (English) Zbl 0055.36401

Bateman Manuscript Project. California Institute of Technology. New York: McGraw-Hill Book Co. XX, 391 p. (1954).

Digital Library of Mathematical Functions:

§10.22(vi) Compendia ‣ §10.22 Integrals ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions
§10.32(iv) Compendia ‣ §10.32 Integral Representations ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions
§10.43(vi) Compendia ‣ §10.43 Integrals ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions
§10.9(iv) Compendia ‣ §10.9 Integral Representations ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions
§11.10(x) Integrals and Sums ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions
§1.14(viii) Compendia ‣ §1.14 Integral Transforms ‣ Areas ‣ Chapter 1 Algebraic and Analytic Methods
§11.5(iii) Compendia ‣ §11.5 Integral Representations ‣ Struve and Modified Struve Functions ‣ Chapter 11 Struve and Related Functions
§11.7(v) Compendia ‣ §11.7 Integrals and Sums ‣ Struve and Modified Struve Functions ‣ Chapter 11 Struve and Related Functions
§11.9(iv) References ‣ §11.9 Lommel Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions
Nicholson-type Integral ‣ §12.12 Integrals ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions
§12.5(iv) Compendia ‣ §12.5 Integral Representations ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions
§13.10(iii) Mellin Transforms ‣ §13.10 Integrals ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions
§13.10(iv) Fourier Transforms ‣ §13.10 Integrals ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions
Loop Integrals ‣ §13.10(ii) Laplace Transforms ‣ §13.10 Integrals ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions
§13.23(ii) Fourier Transforms ‣ §13.23 Integrals ‣ Whittaker Functions ‣ Chapter 13 Confluent Hypergeometric Functions
§13.23(i) Laplace and Mellin Transforms ‣ §13.23 Integrals ‣ Whittaker Functions ‣ Chapter 13 Confluent Hypergeometric Functions
§14.17(v) Laplace Transforms ‣ §14.17 Integrals ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions
§15.14 Integrals ‣ Properties ‣ Chapter 15 Hypergeometric Function
§16.20 Integrals and Series ‣ Meijer G -Function ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer G -Function
§16.5 Integral Representations and Integrals ‣ Generalized Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer G -Function
§18.17(ix) Compendia ‣ §18.17 Integrals ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials
§20.10(iii) Compendia ‣ §20.10 Integrals ‣ Properties ‣ Chapter 20 Theta Functions
§20.10(ii) Laplace Transforms with respect to the Lattice Parameter ‣ §20.10 Integrals ‣ Properties ‣ Chapter 20 Theta Functions
§25.5(ii) In Terms of Other Functions ‣ §25.5 Integral Representations ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions
de Branges–Wilson Beta Integral ‣ §5.13 Integrals ‣ Properties ‣ Chapter 5 Gamma Function
§6.14(iii) Compendia ‣ §6.14 Integrals ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals
§6.7(iv) Compendia ‣ §6.7 Integral Representations ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals
§7.14(iii) Compendia ‣ §7.14 Integrals ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals
§7.7(iii) Compendia ‣ §7.7 Integral Representations ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals
§8.14 Integrals ‣ Incomplete Gamma Functions ‣ Chapter 8 Incomplete Gamma and Related Functions