×

zbMATH — the first resource for mathematics

A theory of spherical functions. I. (English) Zbl 0049.20103

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. (2) 48 (1947), 568 – 640. · Zbl 0045.38801
[2] N. Bourbaki, Topologie générale, Chap. X, Paris, 1949. · Zbl 0036.38601
[3] Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. · Zbl 0063.00842
[4] J. Dieudonné, La dualité dans les espaces vectoriels topologiques, Ann. Sci. École Norm. Sup. (3) 59 (1942), 107 – 139 (French). · Zbl 0027.32101
[5] Lars Gårding, Note on continuous representations of Lie groups, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 331 – 332. · Zbl 0031.05703
[6] I. M. Gel\(^{\prime}\)fand, Spherical functions in symmetric Riemann spaces, Doklady Akad. Nauk SSSR (N.S.) 70 (1950), 5 – 8 (Russian).
[7] I. Gelfand and M. Neumark, The principal series of irreducible representations of the complex unimodular group, C. R. (Doklady) Acad. Sci. URSS (N.S.) 56 (1947), 3 – 4. · Zbl 0029.00502
[8] I. M. Gel\(^{\prime}\)fand and M. A. Naĭmark, Unitary representations of semisimple Lie groups. I, Mat. Sbornik N.S. 21(63) (1947), 405 – 434 (Russian). · Zbl 0038.01703
[9] I. M. Gel\(^{\prime}\)fand and M. A. Naĭmark, Unitary representations of the Lorentz group, Izvestiya Akad. Nauk SSSR. Ser. Mat. 11 (1947), 411 – 504 (Russian). · Zbl 0037.15303
[10] I. M. Gel\(^{\prime}\)fand and M. A. Naĭmark, On the connection between the representations of a complex semi-simple Lie group and those of its maximal compact subgroups, Doklady Akad. Nauk SSSR (N.S.) 63 (1948), 225 – 228 (Russian).
[11] I. M. Gel\(^{\prime}\)fand and M. A. Naĭmark, The relation between the unitary representations of the complex unimodular group and its unitary subgroup, Izvestiya Akad. Nauk SSSR. Ser. Mat. 14 (1950), 239 – 260 (Russian).
[12] I. M. Gel\(^{\prime}\)fand and M. A. Naĭmark, Unitarnye predstavleniya klassičeskih grupp, Trudy Mat. Inst. Steklov., vol. 36, Izdat. Nauk SSSR, Moscow-Leningrad, 1950 (Russian).
[13] Roger Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. 63 (1948), 1 – 84 (French). · Zbl 0031.35903
[14] -, Théorèmes taubériens et théorie spectrale, Ann. École Norm. vol. 64 (1948) pp. 119-138.
[15] -, Sur la théorie des représentations unitaires, Ann. of Math. vol. 53 (1951) pp. 68-124. · Zbl 0042.34606
[16] Roger Godement, Mémoire sur la théorie des caractères dans les groupes localement compacts unimodulaires, J. Math. Pures Appl. (9) 30 (1951), 1 – 110 (French).
[17] Harish-Chandra, Infinite irreducible representations of the Lorentz group, Proc. Roy. Soc. London. Ser. A. 189 (1947), 372 – 401.
[18] Harish-Chandra, Lie algebras and the Tannaka duality theorem, Ann. of Math. (2) 51 (1950), 299 – 330. · Zbl 0036.15701
[19] Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28 – 96. · Zbl 0042.12701
[20] -, Representations of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A. vol. 37, pp. 170-173, 362-365, 366-369).
[21] Kenkichi Iwasawa, On some types of topological groups, Ann. of Math. (2) 50 (1949), 507 – 558. · Zbl 0034.01803
[22] N. Jacobson, Structure theory of simple rings without finiteness assumptions, Trans. Amer. Math. Soc. 57 (1945), 228 – 245. · Zbl 0060.07401
[23] Irving Kaplansky, Groups with representations of bounded degree, Canadian J. Math. 1 (1949), 105 – 112. · Zbl 0037.01603
[24] Irving Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219 – 255. · Zbl 0042.34901
[25] George W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 537 – 545. · Zbl 0035.06901
[26] M. A. Naĭmark, Rings with involutions, Uspehi Matem. Nauk (N.S.) 3 (1948), no. 5(27), 52 – 145 (Russian). · Zbl 0036.07701
[27] J. von Neumann, Zur algebra der Funktionaloperatoren und Theorie der normalen Operatoren, Math. Ann. vol. 102 (1929) pp. 370-427. · JFM 55.0825.02
[28] L. Schwartz, Théorie des Distributions I, II, Paris, 1950, 1951. · Zbl 0037.07301
[29] A. Weil, L’intégration dans les groupes topologiques et ses applications, Paris, 1940. · Zbl 0063.08195
[30] H. Weyl, Gruppen theorie und Quantenmechanik, 2d ed., Leipzig, 1931. · JFM 57.1579.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.