×

A spatially-averaged mathematical model of kidney branching morphogenesis. (English) Zbl 1343.92070

Summary: Kidney development is initiated by the outgrowth of an epithelial ureteric bud into a population of mesenchymal cells. Reciprocal morphogenetic responses between these two populations generate a highly branched epithelial ureteric tree with the mesenchyme differentiating into nephrons, the functional units of the kidney. While we understand some of the mechanisms involved, current knowledge fails to explain the variability of organ sizes and nephron endowment in mice and humans. Here we present a spatially-averaged mathematical model of kidney morphogenesis in which the growth of the two key populations is described by a system of time-dependant ordinary differential equations. We assume that branching is symmetric and is invoked when the number of epithelial cells per tip reaches a threshold value. This process continues until the number of mesenchymal cells falls below a critical value that triggers cessation of branching. The mathematical model and its predictions are validated against experimentally quantified C57Bl6 mouse embryonic kidneys. Numerical simulations are performed to determine how the final number of branches changes as key system parameters are varied (such as the growth rate of tip cells, mesenchyme cells, or component cell population exit rate). Our results predict that the developing kidney responds differently to loss of cap and tip cells. They also indicate that the final number of kidney branches is less sensitive to changes in the growth rate of the ureteric tip cells than to changes in the growth rate of the mesenchymal cells. By inference, increasing the growth rate of mesenchymal cells should maximise branch number. Our model also provides a framework for predicting the branching outcome when ureteric tip or mesenchyme cells change behaviour in response to different genetic or environmental developmental stresses.

MSC:

92C15 Developmental biology, pattern formation
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adivarahan, S.; Menshykau, D.; Michos, O.; Iber, D., Dynamic image-based modelling of kidney branching morphogenesis, Computational Methods in Systems Biology Lecture Notes in Computer Science, 8130, 106-119 (2013)
[2] Barak, H.; Huh, S-H.; Chen, S.; Jeanpierre, C.; Martinovic, J., FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man, Dev. Cell, 22, 1191-1207 (2012)
[3] Barker, D. J.; Eriksson, J. G.; Forsen, T.; Osmond, C., Fetal origins of adult disease: strength of effects and biological basis, Int. J. Epidemiol., 31, 1235-1239 (2002)
[4] Basson, M. A.; Akbulut, S.; Watson-Johnson, J.; Simon, R.; Carroll, T. J., Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction, Dev. Cell, 8, 229-239 (2005)
[5] Basson, M. A.; Watson-Johnson, J.; Shakya, R.; Akbulut, S.; Hyink, D., Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1, Dev. Biol., 299, 466-477 (2006)
[6] Bertram, J. F.; Douglas-Denton, R. N.; Diouf, B.; Hughson, M. D.; Hoy, W. E., Human nephron number: implications for health and disease, Pediatr. Nephrol., 26, 1529-1533 (2011)
[7] Bridgewater, D.; Cox, B.; Cain, J.; Lau, A.; Althaide, V., Canonical WNT/beta-catenin signaling is required for ureteric branching, Dev. Biol., 317, 83-94 (2008)
[8] Bridgewater, D.; Di Giovanni, V.; Cain, J. E.; Cox, B.; Jakobson, M., \(β\)-catenin causes renal dysplasia via upregulation of Tgf \(β2\) and Dkk1, J. Am. Soc. Nephrol., 22, 718-731 (2011)
[9] Cain, J. E.; Rosenblum, N. D., Control of mammalian kidney development by the Hedgehog signaling pathway, Pediatr. Nephrol., 26, 1365-1371 (2011)
[10] Carroll, T. J.; Park, J. S.; Hayashi, S.; Majumdar, A.; McMahon, A. P., Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system, Dev. Cell, 9, 283-292 (2005)
[11] Cebrian, C.; Asai, N.; D’Agati, V.; Costantini, F., The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment, Cell. Rep., 7, 1, 127-137 (2014)
[12] Cebrian, C.; Borodo, K.; Charles, N.; Herzlinger, D. A., Morphometric index of the developing murine kidney, Dev. Dyn., 231, 601-608 (2004)
[13] Costantini, F.; Kopan, R., Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development, Dev. Cell, 18, 698-712 (2010)
[14] Couillard, M.; Trudel, M., C-myc as a modulator of renal stem/progenitor cell population, Dev. Dyn., 238, 405-414 (2009)
[15] Faa, G.; Gerosa, C.; Fanni, D.; Nemolato, S.; Locci, A., Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy, J. Matern. Fetal Neonatal Med., 23, Suppl. 3, S129-S133 (2010)
[16] Hartman, D.; Miura, T., Modelling in vitro lung branching morphogenesis during development, J. Theor. Biol., 242, 862-872 (2006) · Zbl 1447.92041
[17] Hirashima, T.; Iwasa, Y.; Morishita, Y., Dynamic modeling of branching morphogenesis of ureteric bud in early kidney development, J. Theor. Biol., 259, 1, 58-66 (2009) · Zbl 1402.92054
[18] Jain, S., The many faces of RET dysfunction in kidney, Organogenesis, 5, 95-108 (2009)
[19] Karner, C. M.; Das, A.; Ma, Z.; Self, M.; Chen, C., Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development, Development, 138, 7, 1247-1257 (2011)
[20] Little, M. H.; McMahon, A. P., Mammalian kidney development: principles, progress, and projections, Cold Spring Harb. Perspect. Biol., 4, 5 (2012)
[21] Lubkin, S. R.; Murray, J. D., A mechanism for early branching in lung morphogenesis, J. Math. Biol., 34, 77-94 (1995) · Zbl 0835.92005
[22] Majumdar, A.; Vainio, S.; Kispert, A.; McMahon, J.; McMahon, A. P., Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development, Development, 130, 14, 3175-3185 (2003)
[23] Menshykau, D.; Iber, D., Kidney branching morphogenesis under the control of a ligand−receptor-based Turing mechanism, Phys. Biol., 10, 4, 046003 (2013)
[24] Metzger, R. J.; Klein, O. D.; Martin, G. R.; Krasnow, M. A., The branching programme of mouse lung development, Nature, 453, 7196, 745-750 (2008)
[25] Moritz, K. M.; Dodic, M.; Wintour, E. M., Kidney development and the fetal programming of adult disease, Bioessays, 25, 3, 212-220 (2003)
[26] Moritz, K. M.; Mazzuca, M. Q.; Siebel, A. L.; Mibus, A.; Arena, D., Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats, J. Physiol., 587, 2635-2646 (2009)
[27] Moritz, K. M.; Singh, R. R.; Probyn, M. E.; Denton, K. M., Developmental programming of a reduced nephron endowment: more than just a baby׳s birth-weight, Am. J. Physiol., 296, 1, F1-F9 (2009)
[28] Moritz, K. M.; Wintour, E. M.; Black, M. J.; Bertram, J. F.; Caruana, G., Factors influencing mammalian kidney development- implications for health in adult life, Adv. Anat. Embryol. Cell Biol., 196, 1-79 (2008)
[29] Nigam, S. K.; Shah, M. M., How does the ureteric bud branch?, J. Am. Soc. Nephrol., 20, 7, 1465-1469 (2009)
[30] Qiao, J.; Sakurai, H.; Nigam, S. K., Branching morphogenesis independent of mesenchymal-epithelial contact in the developing kidney, Proc. Natl. Acad. Sci. USA, 96, 13, 7330-7335 (1999)
[31] Rozen, E. J.; Schmidt, H.; Dolcet, X.; Basson, M. A.; Jain, S., Loss of Sprouty1 rescues renal agenesis caused by Ret mutation, J. Am. Soc. Nephrol., 20, 255-259 (2009)
[32] Rumballe, B. A.; Georgas, K. M.; Combes, A. N.; Ju, A. L.; Gilbert, T., Nephron formation adopts a novel spatial topology at cessation of nephrogenesis, Dev. Biol., 360, 1, 110-122 (2011)
[33] Schreuder, M.; Delemarre-van de, Waal H.; van Wijk, A., Consequences of intrauterine growth restriction for the kidney, Kidney Blood Press Res., 29, 108-125 (2006)
[34] Sekine, M.; Monkawa, T.; Morizane, R.; Matsuoka, K.; Taya, C., Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury, Transgenic Res., 21, 51-62 (2012)
[35] Self, M.; Lagutin, O. V.; Bowling, B.; Hendrix, J.; Cai, Y., Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney, EMBO J., 25, 5214-5228 (2006)
[36] Shakya, R.; Watanabe, T.; Costantini, F., The role of Gdnf/Ret signaling in ureteric bud cell fate and branching morphogenesis, Dev. Cell, 8, 65-74 (2005)
[37] Short, K. M.; Combes, A. N.; Lefevre, J.; Ju, A. L.; Rumballe, B. A., Global quantification of tissue dynamics in the developing mouse kidney, Dev. Cell, 29, 2, 188-202 (2014)
[38] Short, K.; Hodson, M.; Smyth, I., Spatial mapping and quantification of developmental branching morphogenesis, Development, 140, 2, 471-478 (2013)
[39] Short, K.; Hodson, M.; Smyth, I., Tomographic quantification of branching morphogenesis and renal development, Kid. Int., 77, 1132-1139 (2010)
[40] Singh, R. R.; Cullen-McEwen, L. A.; Kett, M. M.; Boon, W.; Dowling, J., Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring, J. Physiol., 579, 503-513 (2007)
[41] Taylor, R. A.; Wang, H.; Wilkinson, S. E.; Richards, M. G.; Britt, K. L., Lineage enforcement by inductive mesenchyme on adult epithelial stem cells across developmental germ layers, Stem Cells, 27, 12, 3032-3042 (2009)
[42] Weber, S.; Moriniere, V.; Knüppel, T.; Charbit, M.; Dusek, J., Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study, J. Am. Soc. Nephrol., 17, 10, 2864-2870 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.