zbMATH — the first resource for mathematics

Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. (English) Zbl 1331.34160
Summary: A within-host viral infection model with both virus-to-cell and cell-to-cell transmissions and three distributed delays is investigated, in which the first distributed delay describes the intracellular latency for the virus-to-cell infection, the second delay represents the intracellular latency for the cell-to-cell infection, and the third delay describes the time period that viruses penetrated into cells and infected cells release new virions. The global stability analysis of the model is carried out in terms of the basic reproduction number \(\mathcal{R}_0\). If \(\mathcal{R}_0 \leq 1,\) the infection-free (semi-trivial) equilibrium is the unique equilibrium and is globally stable; if \(\mathcal{R}_0 > 1,\) the chronic infection (positive) equilibrium exists and is globally stable under certain assumptions. Examples and numerical simulations for several special cases are presented, including various within-host dynamics models with discrete or distributed delays that have been well-studied in the literature. It is found that the global stability of the chronic infection equilibrium might change in some special cases when the assumptions do not hold. The results show that the model can be applied to describe the within-host dynamics of HBV, HIV, or HTLV-1 infection.

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K20 Stability theory of functional-differential equations
34K25 Asymptotic theory of functional-differential equations
92C60 Medical epidemiology
34K18 Bifurcation theory of functional-differential equations
34K13 Periodic solutions to functional-differential equations
Full Text: DOI
[1] Atkinson, F. V.; Haddock, J. R., On determining phase spaces for functional differential equations, Funkcial. Ekvac., 31, 331-347, (1988) · Zbl 0665.45004
[2] Bangham, C. R.M., The immune control and cell-to-cell spread of human T-lymphotropic virus type 1, J. Gen. Virol., 84, 3177-3189, (2003)
[3] Banks, H. T.; Bortz, D. M.; Holte, S. E., Incorporation of variability into the modeling of viral delays in HIV infection dynamics, Math. Biosci., 183, 63-91, (2003) · Zbl 1011.92037
[4] Beretta, E.; Kuang, Y., Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33, 1144-1165, (2002) · Zbl 1013.92034
[5] Bonhoeffer, S.; May, R. M.; Shaw, G. M.; Nowak, M. A., Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94, 6971-6976, (1997)
[6] Culshaw, R. V.; Ruan, S., A delay-differential equation model of HIV infection of CD4\({}^+\) T-cells, Math. Biosci., 165, 27-39, (2000) · Zbl 0981.92009
[7] Culshaw, R. V.; Ruan, S.; Webb, G., A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46, 425-444, (2003) · Zbl 1023.92011
[8] Dahari, H.; Loa, A.; Ribeiroa, R. M.; Perelson, A. S., Modeling hepatitis C virus dynamics: liver regeneration and critical drug efficacy, J. Theor. Biol., 247, 371-381, (2007)
[9] Debroy, S.; Bolker, B. M.; Martcheva, M., Bistability and long-term cure in a within-host model of hepatitis C, J. Biol. Syst., 19, 533-550, (2011) · Zbl 1382.92177
[10] De Leenheer, P.; Smith, H. L., Virus dynamics: a global analysis, SIAM J. Appl. Math., 63, 1313-1327, (2003) · Zbl 1035.34045
[11] Dimitrov, D. S.; Willey, R. L.; Sato, H.; Chang, L.-J.; Blumenthal, R.; Martin, M. A., Quantitation of human immunodeficiency virus type 1 infection kinetics, J. Virol., 67, 2182-2190, (1993)
[12] Dixit, N. M.; Layden-Almer, J. E.; Layden, T. J.; Perelson, A. S., Modelling how ribavirin improves interferon response rates in hepatitis C virus infection, Nature, 432, 922-924, (2004)
[13] Dixit, N. M.; Markowitz, M.; Ho, D. D.; Perelson, A. S., Estimates of intracellular delay and average drug efficacy from viral load data of HIV-infected individuals under antiretroviral therapy, Antivir. Ther., 9, 237-246, (2004)
[14] Eikenberry, S.; Hews, S.; Nagy, J. D.; Kuang, Y., The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth, Math. Biosci. Eng., 6, 283-299, (2009) · Zbl 1167.92013
[15] Grossman, Z.; Feinberg, M.; Kuznetsov, V.; Dimitrov, D.; Paul, W., HIV infection: how effective is drug combination treatment?, Immunol. Today, 19, 528-532, (1998)
[16] Grossman, Z.; Feinberg, M.; Paul, W. E., Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication, Proc. Natl. Acad. Sci. USA, 95, 6314-6319, (1998)
[17] Grossman, Z.; Polis, M.; Feinberg, M. B., Et al., ongoing HIV dissemination during HAART, Nat. Med., 5, 1099-1104, (1999)
[18] Gummuluru, S.; Kinsey, C. M.; Emerman, M., An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell-to-cell spread of virua, J. Virol., 74, 10882-10891, (2000)
[19] Hale, J. K.; Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21, 11-41, (1978) · Zbl 0383.34055
[20] Hale, J. K.; Lunel, S. M.V., Introduction to functional differential equations, appl. math. sci., (1993), Springer-Verlag New York
[21] Herz, A. V.M.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A., Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA, 93, 7247-7251, (1996)
[22] Katri, P.; Ruan, S., Dynamics of human T-cell lymphotropic virus i (HTLV-I) infection of CD4+T-cells, Comptes Rendus Biol., 327, No. 11, 1009-1016, (2004)
[23] Kirschner, D. E.; Webb, G., A model for treatment strategy in the chemotherapy of aids, Bull. Math. Biol., 58, 167-190, (1996)
[24] Kuang, Y., Delay differential equations with applications in population biology, (1993), Academic Press San Diego
[25] Lai, X.; Zou, X., Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math., 74, 898-917, (2014) · Zbl 1304.34139
[26] Li, M. Y.; Shu, H., Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70, 2434-2448, (2010) · Zbl 1209.92037
[27] Liu, S.; Wang, S.; Wang, L., Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. RWA, 11, 119-127, (2011) · Zbl 1208.34125
[28] Lloyd, A. L., The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data, Proc. R. Soc. Lond. B, 268, 847-854, (2001)
[29] Mittler, J.; Sulzer, B.; Neumann, A.; Perelson, A., Influence of delayed virus production on viral dynamics in HIV-1 infected patients, Math. Biosci., 152, 143-163, (1998) · Zbl 0946.92011
[30] Müller, V.; Marée, A. F.M.; De Boer, R. J., Small variations in multiple parameters account for wide variations in HIV-1 set-points: a novel modelling approach, Proc. R. Soc. Lond. B, 268, 235-242, (2001)
[31] Nelson, P. W.; Murray, J. D.; Perelson, A. S., A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163, 201-215, (2000) · Zbl 0942.92017
[32] Nelson, P. W.; Perelson, A. S., Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179, 73-94, (2002) · Zbl 0992.92035
[33] Neumann, A. U.; Lam, N. P.; Dahari, H.; Gretch, D. R.; Wiley, T. E.; Layden, T. J.; Perelson, A. S., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282, 103-107, (1998)
[34] Nowak, M. A.; Bangham, C. R.M., Population dynamics of immune responses to persistent viruses, Science, 272, 74-79, (1996)
[35] Nowak, M. A.; May, R. M., Virus dynamics: mathematical principles of immunology and virology, (2000), Oxford University Press Oxford · Zbl 1101.92028
[36] Pawelek, K. A.; Liu, S.; Pahlevani, F.; Rong, L., A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data, Math. Biosci., 235, 98-109, (2012) · Zbl 1241.92042
[37] Perelson, A. S.; Kirschner, D. E.; De Boer, R., Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114, 81-125, (1993) · Zbl 0796.92016
[38] Perelson, A. S.; Nelson, P. W., Mathematical analysis of HIV-I: dynamics in vivo, SIAM Review, 41, 3-44, (1999) · Zbl 1078.92502
[39] Pourbashash, H.; Pilyugin, S. S.; McCluskey, C. C.; De Leenheer, P., Global analysis of within host virus models with cell-to-cell viral transmission, Discrete Contin. Dyn. Syst. B, 19, 3341-3357, (2014) · Zbl 1330.37076
[40] Röst, G.; Wu, J., SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5, 389-402, (2008) · Zbl 1165.34421
[41] Sattentau, Q., Avoiding the void: cell-to-cell spread of human viruses, Nat. Rev. Microbiol., 6, 815-826, (2008)
[42] Shu, H.; Wang, L.; Watmough, J., Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73, 1280-1302, (2013) · Zbl 1272.92031
[43] Sigal, A.; Kim, J. T.; Balazs, A. B.; Dekel, E.; Mayo, A.; Milo, R.; Baltimore, D., Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477, 95-98, (2011)
[44] Spouge, J. L.; Shrager, R. I.; Dimitrov, D. S., HIV-1 infection kinetics in tissue cultures, Math. Biosci., 138, 1-22, (1996) · Zbl 0873.92023
[45] Stilianakis, N. I.; Seydel, J., Modeling the T-cell dynamics and pathogenesis of HTLV-I infection, Bull. Math. Biol., 61, 935-947, (1999) · Zbl 1323.92117
[46] Wang, Y.; Zhou, Y.; Wu, J.; Hefferman, J., Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. Biosci., 219, 104-112, (2009) · Zbl 1168.92031
[47] Sturdevant, C. B.; Joseph, S. B.; Schnell, G.; Price, R. W.; Swanstrom, R., Et al., compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection, PLoS Pathog., 11, 3, (2015)
[48] Wodarz, D.; Lloyd, A. L.; Jansen, V. A.A.; Nowak, M. A., Dynamics of macrophage and T cell infection by HIV, J. Theor. Biol., 196, 101-113, (1999)
[49] Wodarz, D.; Nowak, M. A.; Bangham, C. R.M., The dynamics of HTLV-I response and the CTL response, Immunol. Today, 20, 220-227, (1999)
[50] Zhu, H.; Zou, X., Impact of delays in cell infection and virus production on HIV-1 dynamics, Math. Med. Biol., 25, 99-112, (2008) · Zbl 1155.92031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.