×

zbMATH — the first resource for mathematics

Bifurcations and control in a discrete predator-prey model with strong Allee effects. (English) Zbl 1390.39060

MSC:
39A60 Applications of difference equations
92D25 Population dynamics (general)
39A28 Bifurcation theory for difference equations
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abed, E. H.; Wang, H. O.; Chen, R. C., Stabilization of period doubling bifurcation and implications for control of chaos, Physica D, 70, 154-164, (1994) · Zbl 0807.58033
[2] Aguirre, P.; Flores, J. D.; González-Olivares, E., Bifurcations and global dynamics in a predator-prey model with a strong allee effect on the prey and a ratio-dependent functional response, Nonlin. Anal.: Real World Appl., 16, 235-249, (2014) · Zbl 1298.34078
[3] Allman, E. S.; Rhodes, J. A., Mathematical Models in Biology: An Introduction, (2004), Cambridge University Press, Cambridge · Zbl 1060.92003
[4] Amarasekare, P., Interactions between local dynamics and dispersal: insights from single species models, Theor. Popul. Biol., 53, 44-59, (1998) · Zbl 0894.92029
[5] Babol, S. H. R., A population biological model with a singular nonlinearity, Appl. Math., 59, 257-264, (2014)
[6] Bascompte, J., Extinction thresholds: insights from simple models, Ann. Zool. Fennici., 40, 99-114, (2003)
[7] Bazykin, A. D., Nonlinear Dynamics of Interacting Populations, (1998), World Scientific Publishing, Singapore
[8] Bellingeri, M.; Bodini, A., Threshold extinction in food webs, Theor. Ecol., 6, 143-152, (2013)
[9] Berec, L.; Angulo, E.; Courchamp, F., Multiple allee effects and population management, Trends Ecol. Evol., 22, 185-191, (2007)
[10] Boukal, D.; Berec, L., Single-species models of the allee effect: extinction boundaries sex ratios and mate encounters, J. Theor. Biol., 218, 375-394, (2002)
[11] Buffoni, G.; Groppi, M.; Soresina, C., Dynamics of predator-prey models with a strong allee effect on the prey and predator-dependent trophic functions, Nonlin. Anal.: Real World Appl., 30, 143-169, (2016) · Zbl 1366.92100
[12] Celik, C.; Duman, O., Allee effect in a discrete-time predator-prey system, Chaos Solit. Fract., 40, 1956-1962, (2009) · Zbl 1198.34084
[13] Chen, G.; Yu, X., On time-delayed feedback control of chaotic systems, IEEE Trans. Circuits Syst., 46, 767-772, (1999) · Zbl 0951.93034
[14] Chen, G.; Fang, J.; Hong, Y.; Qin, H., Controlling Hopf bifurcations: discrete-time systems, Discr. Dyn. Nat. Soc., 5, 29-33, (2000) · Zbl 1229.93113
[15] Chen, Q.; Teng, Z.; Wang, L.; Jiang, H., The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence, Nonlin. Dyn., 71, 55-73, (2013) · Zbl 1269.92062
[16] Conway, E. D.; Smoller, J. A., Global analysis of a system of predator-prey equations, SIAM J. Appl. Math., 46, 630-642, (1986) · Zbl 0608.92016
[17] Courchamp, F.; Berec, L.; Gascoigne, J., Allee Effects in Ecology and Conservation, (2008), Oxford University Press, NY
[18] Danca, M.; Codreanu, S.; Bako, B., Detailed analysis of a nonlinear prey-predator model, J. Biol. Phys., 23, 11-20, (1997)
[19] Dhar, J.; Singh, H.; Bhatti, H., Discrete-time dynamics of a system with crowding effect and predator partially dependent on prey, Appl. Math. Comput., 252, 324-335, (2015) · Zbl 1338.92100
[20] Din, Q.; Saeed, U., Bifurcation analysis and chaos control in a host-parasitoid model, Math. Meth. Appl. Sci., 40, 5391-5406, (2017) · Zbl 1383.92066
[21] Din, Q., Controlling chaos in a discrete-time prey-predator model with allee effects, Int. J. Dyn. Contr., (2017)
[22] Din, Q., Neimark-Sacker bifurcation and chaos control in hassell-varley model, J. Diff. Eqs. Appl., 23, 741-762, (2017) · Zbl 1377.92067
[23] Din, Q., Qualitative analysis and chaos control in a density-dependent host-parasitoid system, Int. J. Dyn. Contr., (2017)
[24] Din, Q., Bifurcation analysis and chaos control in discrete-time glycolysis models, J. Math. Chem., 56, 904-931, (2018) · Zbl 1384.92030
[25] Elaydi, S., An Introduction to Difference Equations, (2005), Springer-Verlag, NY · Zbl 1071.39001
[26] Ghaziani, R.; Govaerts, W.; Sonck, C., Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response, Nonlin. Anal.: Real World Appl., 13, 1451-1465, (2012) · Zbl 1239.39011
[27] Greene, C., Habitat selection reduces extinction of populations subject to allee effects, Theor. Popul. Biol., 64, 1-10, (2003) · Zbl 1100.92041
[28] He, Z.; Lai, X., Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlin. Anal.: Real World Appl., 12, 403-417, (2011) · Zbl 1202.93038
[29] Hopper, K.; Roush, R., Mate finding, dispersal, number released, and the success of biological control introductions, Ecol. Entomol., 18, 321-331, (1993)
[30] Hu, D.; Cao, H., Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type, Commun. Nonlin. Sci. Numer. Simulat., 22, 702-715, (2015) · Zbl 1331.92125
[31] Jana, D., Chaotic dynamics of a discrete predator-prey system with prey refuge, Appl. Math. Comput., 224, 848-865, (2013) · Zbl 1334.92344
[32] Khan, A. Q.; Qureshi, M. N., Stability analysis of a discrete biological model, Int. J. Biomath., 9, 1650021, (2016) · Zbl 1342.39017
[33] Kristensen, A. R., From biological models to economic optimization, Prev. Vet. Med., 118, 226-237, (2015)
[34] Kuznetsov, Y., Elements of Applied Bifurcation Theory, (2004), Springer-Verlag, NY · Zbl 1082.37002
[35] Lawton, J.; May, R., Extinction Rates, (2004), Oxford University Press, Oxford
[36] Lewis, M. A.; Kareiva, P., Allee dynamics and the spread of invading organisms, Theor. Popul. Biol., 43, 141-158, (1993) · Zbl 0769.92025
[37] Li, S.; Zhang, W., Bifurcations of a discrete prey-predator model with Holling type II functional response, Discr. Contin. Dyn. Syst. B, 14, 159-176, (2010) · Zbl 1200.37043
[38] Li, B.; He, Z. M., 1:2 and 1:4 resonances in a two-dimensional discrete hindmarsh-rose model, Nonlin. Dyn., 79, 705-720, (2015) · Zbl 1331.92031
[39] Liu, X.; Xiao, D., Bifurcations in a discrete time Lotka-Volterra predator-prey system, Discr. Contin. Dyn. Syst. B, 6, 559-572, (2006) · Zbl 1100.37054
[40] Luo, X. S.; Chen, G. R.; Wang, B. H., Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Solit. Fract., 18, 775-783, (2003) · Zbl 1073.37512
[41] Mendez, V.; Sans, C.; Llopis, I.; Campos, D., Extinction conditions for isolated populations with allee effect, Math. Biosci., 232, 78-86, (2011) · Zbl 1217.92080
[42] Murakami, K., The invariant curve caused by Neimark-Sacker bifurcation, Dyn. Contin. Discr. Impuls. Syst. Ser. A, 9, 121-132, (2002) · Zbl 1018.37030
[43] Murray, J. D., Mathematical Biology: I. An Introduction, (2001), Springer-Verlag, NY
[44] Neubert, M. G.; Kot, M., The subcritical collapse of predator populations in discrete-time predator-prey models, Math. Biosci., 110, 45-66, (1992) · Zbl 0747.92024
[45] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199, (1990) · Zbl 0964.37501
[46] Ren, J. L.; Yu, L. P., Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model, J. Nonlin. Sci., 26, 1895-1931, (2016) · Zbl 1356.93053
[47] Resch, A. F.; Landry, G.; Kamp, F.; Cabal, G.; Belka, C.; Wilkens, J. J.; Parodi, K.; Dedes, G., Quantification of the uncertainties of a biological model and their impact on variable RBE proton treatment plan optimization, Phys. Med., 36, 91-102, (2017)
[48] Rigueira, D.; Rocha, P.; Mariano-Neto, E., Forest cover, extinction thresholds and time lags in woody plants (myrtaceae) in the Brazilian atlantic forest: resources for conservation, Biodivers. Conserv., 22, 3141-3163, (2013)
[49] Saakian, D. B.; Ghazaryan, M.; Bratus, A.; Hu, C. K., Biological evolution model with conditional mutation rates, Physica A, 474, 32-38, (2017)
[50] Salman, S. M.; Yousef, A. M.; Elsadany, A. A., Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response, Chaos Solit. Fract., 93, 20-31, (2016) · Zbl 1372.37134
[51] Sato, K., Allee threshold and extinction threshold for spatially explicit metapopulation dynamics with allee effects, Popul. Ecol., 51, 411-418, (2009)
[52] van Voorn, G. A. K.; Hemerik, L.; Boer, M. P.; Kooi, B. W., Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong allee effect, Math. Biosci., 209, 451-469, (2007) · Zbl 1126.92062
[53] Wang, J.; Shi, J.; Wei, J., Predator-prey system with strong allee effect in prey, J. Math. Biol., 62, 291-331, (2011) · Zbl 1232.92076
[54] Wang, C.; Li, X., Further investigations into the stability and bifurcation of a discrete predator-prey model, J. Math. Anal. Appl., 422, 920-939, (2015) · Zbl 1310.37045
[55] Wen, G. L.; Xu, D. L.; Xie, J. H., Controlling Hopf bifurcations of discrete-time systems in resonance, Chaos Solit. Fract., 23, 1865-1877, (2005) · Zbl 1068.93023
[56] Wu, D. Y.; Zhao, H. Y., Complex dynamics of a discrete predator-prey model with the prey subject to the allee effect, J. Diff. Eqs. Appl., 23, 1765-1806, (2017) · Zbl 1382.92230
[57] Yang, L., Recent advances on determining the number of real roots of parametric polynomials, J. Symb. Comput., 28, 225-242, (1999) · Zbl 0957.65041
[58] Yi, N.; Zhang, Q. L., Codimension-two bifurcations analysis and tracking control on a discrete epidemic model, J. Syst. Sci. Complex., 24, 1033-1056, (2011) · Zbl 1338.93223
[59] Yuan, L.; Yang, Q., Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Appl. Math. Model., 39, 2345-2362, (2015)
[60] Zhang, X.; Zhang, Q. L.; Sreeram, V., Bifurcation analysis and control of a discrete harvested prey-predator system with beddington-deangelis functional response, J. Franklin Instit., 347, 1076-1096, (2010) · Zbl 1210.92062
[61] Zhang, L.; Zhang, C.; Zhao, M., Dynamic complexities in a discrete predator-prey system with lower critical point for the prey, Math. Comput. Simulat., 105, 119-131, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.