×

Partitioned formulation and stability analysis of a fluid interacting with a saturated porous medium by localised Lagrange multipliers. (English) Zbl 1352.76118

Summary: In this work, a partitioned scheme for the numerical simulation of the surface-coupled problem of a fluid interacting with a saturated porous medium (fluid-porous-media interaction) is proposed by adopting the method of localised Lagrange multipliers, which facilitates an automatic spatial partitioning of the problem and a parallel treatment of the interacting components, and allows for using tailored solvers optimised for each subproblem. Moreover, proceeding from the interaction between an incompressible bulk fluid with a saturated biphasic porous medium with intrinsically incompressible and inert constituents, the characteristics of the governing equations are scrutinised, and the various constraints within the subsystems are identified. Following this, the method of perturbed Lagrange multipliers is used to replace the constrained equation systems within each subdomain by unconstrained ones. Furthermore, considering the one-dimensional (1D) version of the equations, a stability analysis of the proposed solution method is performed, and the unconditional stability of the partitioned solution scheme is shown. Solving 1D and 2D numerical benchmark examples, the applicability of the proposed scheme is demonstrated.

MSC:

76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lagrange, Mécanique Analytique (1811)
[2] Joosten, Analysis of the block Gauss-Seidel solution procedure for a strongly coupled model problem with reference to fluid-structure interaction, International Journal for Numerical Methods in Engineering 78 pp 757– (2009) · Zbl 1183.74347 · doi:10.1002/nme.2503
[3] Farhat, Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations (SIAM Proceedings in Applied Mathematics) pp 271– (1992)
[4] Bernardi, Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters pp 269– (1993) · doi:10.1007/978-94-011-1810-1_17
[5] Bjørstad, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM Journal on Numerical Analysis 23 pp 1097– (1986) · Zbl 0615.65113 · doi:10.1137/0723075
[6] Park, Partitioned formulation of internal fluid-structure interaction problems by localized lagrange multipliers, Computer Methods in Applied Mechanics and Engineering 190 pp 2989– (2001) · Zbl 0983.74022 · doi:10.1016/S0045-7825(00)00378-9
[7] Brummelen, Partitioned iterative solution methods for fluid-structure interaction, International Journal for Numerical Methods in Fluids 65 pp 3– (2011) · Zbl 1427.74049 · doi:10.1002/fld.2465
[8] Brummelen, Space/time multigrid for a fluid-structure-interaction problem, Applied Numerical Mathematics 58 pp 1951– (2008) · Zbl 1148.74046 · doi:10.1016/j.apnum.2007.11.012
[9] Ross, Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers: formulation, Computer Methods in Applied Mechanics and Engineering 197 pp 3057– (2008) · Zbl 1194.74471 · doi:10.1016/j.cma.2008.02.017
[10] Ross, Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods, Computer Methods in Applied Mechanics and Engineering 198 (9) pp 986– (2009) · Zbl 1229.74034 · doi:10.1016/j.cma.2008.11.006
[11] Deparis, Fluid-structure algorithms based on Steklov-Poincaré operators, Computer Methods in Applied Mechanics and Engineering 195 pp 5797– (2006) · Zbl 1124.76026 · doi:10.1016/j.cma.2005.09.029
[12] Park KC Felippa CA A variational principle for the formulation of partitioned structural systems Technical Report 1999
[13] Markert, Fluid penetration effects in porous media contact, Continuum Mechanics and Thermodynamics 20 pp 303– (2008) · Zbl 1160.74392 · doi:10.1007/s00161-008-0083-z
[14] Ehlers, Porous Media: Theory, Experiments and Numerical Applications pp 3– (2002) · doi:10.1007/978-3-662-04999-0_1
[15] Ehlers, Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels, International Journal of Advances in Engineering Sciences and Applied Mathematics 1 pp 1– (2009) · doi:10.1007/s12572-009-0001-z
[16] Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000) · Zbl 1191.74002
[17] Markert, Comparison of monolithic and splitting solution schemes for dynamic porous media problems, International Journal for Numerical Methods in Engineering 82 pp 1341– (2010) · Zbl 1188.74065
[18] Prohl, Projection and Quasi-compressibility Methods for Solving the Incompressible Navier-Stokes Equations (1997) · doi:10.1007/978-3-663-11171-9
[19] Chorin, A numerical method for solving incompressible viscous problems, Journal of Applied Physics 2 pp 12– (1967) · Zbl 0149.44802
[20] Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM Journal on Scientific Computing 7 pp 870– (1986) · Zbl 0594.76023 · doi:10.1137/0907059
[21] Rannacher, Fundamental Directions in Mathematical Fluid Mechanics pp 191– (2000) · doi:10.1007/978-3-0348-8424-2_6
[22] Suh, A penalty finite element analysis for nonlinear mechanics of biphasic hydrated soft tissue under large deformation, International Journal for Numerical Methods in Engineering 32 pp 1411– (1991) · Zbl 0763.73057 · doi:10.1002/nme.1620320704
[23] Nocedal, Numerical Optimization (2006)
[24] Park, Locking, spurious mechanisms, and pressure divergence in penalty finite element methods for stokes flow problems, Computer Methods in Applied Mechanics and Engineering 47 pp 315– (1984) · Zbl 0545.76040 · doi:10.1016/0045-7825(84)90082-3
[25] Heinrich, The penalty method for the Navier-Stokes equations, Archive of Computational Methods in Engineering 2 pp 51– (1995) · doi:10.1007/BF02904995
[26] Brezzi, Mixed and Hybrid Finite Element Methods (1991) · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[27] Zienkiewicz, The patch test for mixed formulations, International Journal for Numerical Methods in Engineering 23 pp 1873– (1986) · Zbl 0614.65115 · doi:10.1002/nme.1620231007
[28] Spilker, A mixed-penalty finite element formulation of the linear biphasic theory for soft tissues, International Journal for Numerical Methods in Engineering 30 pp 1063– (1990) · Zbl 0716.73075 · doi:10.1002/nme.1620300508
[29] Malkus, Mixed finite element methods - reduced and selective integration techniques: a unification of concepts, Computer Methods in Applied Mechanics and Engineering 15 pp 63– (1978) · Zbl 0381.73075 · doi:10.1016/0045-7825(78)90005-1
[30] Sohn, A poisson equation formulation for pressure calculations in penalty finite element models for viscous incompressible flows, International Journal for Numerical Methods in Engineering 30 pp 349– (1990) · Zbl 0714.76057 · doi:10.1002/nme.1620300209
[31] Wall WA Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen Dissertation, 31 1999
[32] Belytschko, Nonlinear Finite Elements for Continua and Structures (2000)
[33] Donea, An arbitrary Lagrangian-Eulerian finite-element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering 33 pp 689– (1982) · Zbl 0508.73063 · doi:10.1016/0045-7825(82)90128-1
[34] Farhat, Encyclopedia of Computational Mechanics pp 459– (2004)
[35] Markert, A survey of selected coupled multifield problems in computational mechanics, Journal of Coupled Systems and Multiscale Dynamics 1 pp 22– (2013) · doi:10.1166/jcsmd.2013.1007
[36] Hughes, Finite element analysis of incompressible viscous flows by the penalty function formulation, Journal of Computational Physics 30 pp 1– (1979) · Zbl 0412.76023 · doi:10.1016/0021-9991(79)90086-X
[37] Kovalyshen Y Fluid-driven fracture in poroelastic medium Dissertation Thesis 2010
[38] Park, A simple algorithm for localized construction of non-matching structural interfaces, International Journal for Numerical Methods in Engineering 53 pp 2117– (2002) · Zbl 1169.74653 · doi:10.1002/nme.374
[39] Ehlers, Stability analysis of finite difference schemes revisited: a study of decoupled solution strategies for coupled multifield problems, International Journal for Numerical Methods in Engineering 94 pp 758– (2013) · Zbl 1352.65234 · doi:10.1002/nme.4480
[40] Strikwerda, Finite Difference Schemes and Partial Differential Equations (2004) · Zbl 1071.65118 · doi:10.1137/1.9780898717938
[41] Liénard, Sur la signe de la partie reelle des racines d’une équation algebrique, Journal de Mathématiques Pures et Appliqués 10 pp 291– (1914)
[42] Diebels, Dynamic analysis of a fully saturated porous medium accounting for geometrical and material non-linearities, International Journal for Numerical Methods in Engineering 39 pp 81– (1996) · Zbl 0842.76087 · doi:10.1002/(SICI)1097-0207(19960115)39:1<81::AID-NME840>3.0.CO;2-B
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.