×

zbMATH — the first resource for mathematics

Orbital-enriched flat-top partition of unity method for the Schrödinger eigenproblem. (English) Zbl 1440.65163
Summary: Quantum mechanical calculations require the repeated solution of a Schrödinger equation for the wavefunctions of the system, from which materials properties follow. Recent work has shown the effectiveness of enriched finite element type Galerkin methods at significantly reducing the degrees of freedom required to obtain accurate solutions. However, time to solution has been adversely affected by the need to solve a generalized rather than standard eigenvalue problem and the ill-conditioning of associated system matrices. In this work, we address both issues by proposing a stable and efficient orbital-enriched partition of unity method to solve the Schrödinger boundary-value problem in a parallelepiped unit cell subject to Bloch-periodic boundary conditions. In the proposed partition of unity method, the three-dimensional domain is covered by overlapping patches, with a compactly-supported weight function associated with each patch. A key ingredient in our approach is the use of non-negative weight functions that possess the flat-top property, i.e., each weight function is identically equal to unity over some finite subset of its support. This flat-top property provides a pathway to devise a stable approximation over the whole domain. On each patch, we use \(p\) th degree orthogonal (Legendre) polynomials that ensure \(p\) th order completeness, and in addition include eigenfunctions of the radial Schrödinger equation. Furthermore, we adopt a variational lumping approach to construct a (block-)diagonal overlap matrix that yields a standard eigenvalue problem for which there exist efficient eigensolvers. The accuracy, stability, and efficiency of the proposed method is demonstrated for the Schrödinger equation with a harmonic potential as well as a localized Gaussian potential. We show that the proposed approach delivers optimal rates of convergence in the energy, and the use of orbital enrichment significantly reduces the number of degrees of freedom for a given desired accuracy in the energy eigenvalues while the stability of the enriched approach is fully maintained.

MSC:
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
Software:
PUMA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ashcroft, N. W.; Mermin, N. D., Solid State Physics (1976), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York · Zbl 1118.82001
[2] Sukumar, N.; Pask, J. E., Classical and enriched finite element formulations for Bloch-periodic boundary conditions, Internat. J. Numer. Methods Engrg., 77, 8, 1121-1138 (2009) · Zbl 1156.81313
[3] Lin, L.; Lu, J.; Ying, L.; E, W., Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation, J. Comput. Phys., 231, 4, 2140-2154 (2012) · Zbl 1251.82008
[4] Zhang, G.; Lin, L.; Hu, W.; Yang, C.; Pask, J. E., Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations, J. Comput. Phys., 335, 426-443 (2017) · Zbl 1375.82015
[5] Pask, J. E.; Sukumar, N., Partition of unity finite element method for quantum mechanical materials calculations, Extreme Mech. Lett., 11, 8-17 (2017)
[6] Yamakawa, S.; Hyodo, S., Electronic state calculation of hydrogen in metal clusters based on Gaussian-fem mixed basis function, J. Alloys Compd., 356-357, 231-235 (2003)
[7] Yamakawa, S.; Hyodo, S., Gaussian finite-element mixed-basis method for electronic structure calculations, Phys. Rev. B, 71, 3, 035113 (2005)
[8] Chen, J. S.; Hu, W.; Puso, M., Orbital \(h p\)-cloud for solving Schrödinger equation in quantum mechanics, Comput. Methods Appl. Mech. Engrg., 196, 3693-3705 (2007) · Zbl 1173.81301
[10] Pask, J. E.; Sukumar, N.; Mousavi, S. E., Linear scaling solution of the all-electron Coulomb problem in solids, Int. J. Multiscale Comput. Eng., 10, 1, 83-99 (2012)
[11] Banerjee, A. S.; Lin, L.; Hu, W.; Yang, C.; Pask, J. E., Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations, J. Chem. Phys., 145, 15, 154101 (2016)
[12] Kanungo, B.; Gavini, V., Large-scale all-electron density functional theory calculations using an enriched finite-element basis, Phys. Rev. B, 95, 035112 (2017)
[13] Davydov, D.; Gerasimov, T.; Pelteret, J.-P.; Steinmann, P., Convergence study of the \(h\)-adaptive pum and the \(h p\)-adaptive fem applied to eigenvalue problems in quantum mechanics, Adv. Model. Simul. Eng. Sci., 4, 1, 7 (2017)
[14] Melenk, J. M.; Babuška, I., The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314 (1996) · Zbl 0881.65099
[15] Babuška, I.; Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[16] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method—Part II: Efficient cover construction and reliable integration, SIAM J. Sci. Comput., 23, 5, 1655-1682 (2002) · Zbl 1011.65069
[17] Schweitzer, M. A., Stable enrichment and local preconditioning in the particle-partition of unity method, Numer. Math., 118, 1, 137-170 (2011) · Zbl 1217.65210
[18] Schweitzer, M. A., Variational mass lumping in the partition of unity method, SIAM J. Sci. Comput., 35, 2, A1073-A1097 (2013) · Zbl 1266.65162
[19] Ihlenburg, F., (Finite Element Analysis of Acoustic Scattering. Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences, vol. 132 (1998), Springer-Verlag: Springer-Verlag New York, NY) · Zbl 0908.65091
[20] (Deymier, P. A., Acoustic Metamaterials and Phononic Crystals. Acoustic Metamaterials and Phononic Crystals, Spring Series in Solid-State Sciences (2013), Springer: Springer New York, NY)
[21] Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic Crystals: Molding the Flow of Light (2008), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1144.78303
[22] Schweitzer, M. A., (A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 29 (2003), Springer) · Zbl 1016.65099
[23] Klaar, C., A Partition of Unity Method for Quantum Mechanical Material Calculations (2016), Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Numerische Simulation, (Master’s thesis)
[24] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 3, 253-304 (2010) · Zbl 1202.74169
[25] Schweitzer, M. A., Generalizations of the finite element method, Cent. Eur. J. Math., 10, 1, 3-24 (2012) · Zbl 1245.65159
[26] Babuška, I.; Caloz, G.; Osborn, J. E., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 945-981 (1994) · Zbl 0807.65114
[27] Schweitzer, M. A., Generalized Finite Element and Meshfree Methods (2008), Habilitation, Rheinische Friedrich-Wilhelms-Univeristät Bonn
[28] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method—Part VII: Adaptivity, (Griebel, M.; Schweitzer, M. A., Meshfree Methods for Partial Differential Equations III. Meshfree Methods for Partial Differential Equations III, Lecture Notes in Computational Science and Engineering, vol. 57 (2006), Springer), 121-148
[29] Schweitzer, M. A., An adaptive hp-version of the multilevel particle-partition of unity method, Comput. Methods Appl. Mech. Engrg., 198, 1260-1272 (2009) · Zbl 1157.65494
[30] Strouboulis, T.; Babuška, I.; Hidajat, R., The generalized finite element method for Helmholtz equation: Theory, computation, and open problems, Comput. Methods Appl. Mech. Engrg., 195, 37-40, 4711-4731 (2006) · Zbl 1120.76044
[31] Strouboulis, T.; Hidajat, R.; Babuška, I., The generalized finite element method for Helmholtz equation. Part II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment, Comput. Methods Appl. Mech. Engrg., 197, 5, 364-380 (2008) · Zbl 1169.76397
[32] Duarte, C. A.M.; Oden, J. T., \(h p\) clouds -A meshless method to solve boundary value problems, Numer. Methods Partial Differential Equations, 12, 673-705 (1996) · Zbl 0869.65069
[33] Belytschko, T.; Lu, Y. Y.; Gu, L., Crack propagation by element-free Galerkin methods, Eng. Fract. Mech., 51, 295-315 (1995)
[34] Schweitzer, M. A., A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations (2002), Institut für Angewandte Mathematik, Universität Bonn, (Dissertation)
[35] Huerta, A.; Belytschko, T.; Fernández-Méndez, T.; Rabczuk, T., (Meshfree Methods. Meshfree Methods, Encyclopedia of Computational Mechanics, vol. 1 (2004), Wiley), 279-309, (Chapter 10)
[36] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[37] Babuška, I.; Banerjee, U., Stable generalized finite element method (SGFEM), Comput. Methods Appl. Mech. Engrg., 201-204, Supplement C, 91-111 (2012) · Zbl 1239.74093
[38] Hu, J.; Huang, Y.-Q.; Shen, H., The lower approximation of eigenvalue by lumped mass finite element method, J. Comput. Math., 22, 4, 545-556 (2004) · Zbl 1069.65122
[39] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Prentice-Hall · Zbl 0278.65116
[40] Tong, P.; Pian, T. H.H.; Bucciarblli, L. L., Mode shapes and frequencies by finite element method using consistent and lumped masses, Comput. Struct., 1, 4, 623-638 (1971)
[41] Hughes, T. J.R., (The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Civil and Mechanical Engineering Series (2000), Dover Publications) · Zbl 1191.74002
[42] Zhou, Y.; Tiago, Y. Saad M. L.; Chelikowsky, J. R., Self-consistent-field calculations using Chebyshev-filtered subspace iteration, J. Comput. Phys., 219, 1, 172-184 (2006) · Zbl 1105.65111
[43] Griebel, M.; Schweitzer, M. A., A particle-partition of unity method—part v: Boundary conditions, (Hildebrandt, S.; Karcher, H., Geometric Analysis and Nonlinear Partial Differential Equations (2002), Springer), 517-540
[44] Schweitzer, M. A., An algebraic treatment of essential boundary conditions in the particle-partition of unity method, SIAM J. Sci. Comput., 31, 2, 1581-1602 (2009) · Zbl 1189.65284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.