zbMATH — the first resource for mathematics

Frenkel-Gross’ irregular connection and Heinloth-Ngô-Yun’s are the same. (English) Zbl 1393.14011
The goal of this paper is to compare two connections on \(\mathbb{G}_m\), one constructed by E. Frenkel and B. Gross [Ann. Math. (2) 170, No. 3, 1469–1512 (2009; Zbl 1209.14017)], and the other by J. Heinloth et al. [Ann. Math. (2) 177, No. 1, 241–310 (2013; Zbl 1272.14012)]. These connections have regular singularity at \(0 \in \mathbb{P}^1\), with principal unipotent monodromy; at the point \(\infty\) they are irregular.
The idea is to use the automorphic to Galois direction in the geometric Langlands correspondence for \(D\)-modules. The machinery of Beilinson-Drinfeld produces an automorphic \(D\)-module \(\mathrm{Aut}_{\mathcal{E}}\) on \(\mathrm{Bun}_{\mathcal{G}}\) from the Heinloth-Ngo-Yun connection, where \(\mathcal{G}\) is an appropriate model of the reductive group \(G\) in question, with prescribed ramification at \(\{0, \infty\}\). One observes that \(\mathrm{Aut}_{\mathcal{E}}\) is equivariant under the action of \(V := I(1)/I(2)\) with respect to a generic character \(\Psi: V \to \mathbb{G}_a\). One the other hand, it is also the clean extension of its restriction \(\mathcal{L}_\Psi\) to an open substack \(\overset{\circ}{\mathrm{Bun}_{\mathcal{G}}} \simeq V\); here \(\mathcal{L}_\Psi\) denotes the pull-back of the exponential \(D\)-module on \(\mathbb{G}_a\) through \(\Psi\). One then deduces that the Hecke eigenvalue of \(\mathrm{Aut}_{\mathcal{E}}\) coincides with the Frenkel-Gross connection, as desired.
In order to implement these ideas, the author enhances Beilinson-Drinfeld’s quantization of the Hitchin integrable system to the case of certain non-constant group schemes. He also studies the images of the duals of Moy-Prasad subgroups under the local Hitchin map. These results are technical and might be useful for other purposes in geometric Langlands program.

14D24 Geometric Langlands program (algebro-geometric aspects)
22E57 Geometric Langlands program: representation-theoretic aspects
Full Text: DOI arXiv
[1] Beilinson, A., Drinfeld, V.: Chiral Algebras, American Mathematical Society Colloquium Publications 51. American Mathematical Society, Providence, RI (2004) · Zbl 1138.17300
[2] Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves. www.math.uchicago.edu/ mitya/langlands · Zbl 0864.14007
[3] Chen, T.-H.: Vinberg’s \(θ \)-groups and rigid connection. arXiv:1409.3517 · Zbl 1071.17005
[4] Chen, T.-H., Kamgarpour, M.: Preservation of depth in local geometric Langlands correspondence, to appear in Transactions of the AMS · Zbl 1401.17020
[5] Faltings, G, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc., 5, 41-68, (2003) · Zbl 1020.14002
[6] Frenkel, E.: Langlands Correspondence for Loop Groups. Cambridge University Press, Cambridge (2007) · Zbl 1133.22009
[7] Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, 2nd ed. Mathematical Surveys and Monographs 88. AMS, Providence, RI (2004) · Zbl 1106.17035
[8] Frenkel, E; Gaitsgory, D, Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebr. Geom. Number Theory Prog. Math., 253, 69-260, (2006) · Zbl 1184.17011
[9] Frenkel, E; Gross, B, A rigid irregular connection on the projective line, Ann. Math., 170-3, 1469-1512, (2009) · Zbl 1209.14017
[10] Heinloth, J; Ngô, BC; Yun, Z, Kloosterman sheaves for reductive groups, Ann. Math., 177-1, 241-310, (2013) · Zbl 1272.14012
[11] Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1994)
[12] Ngô, BC, Le lemme fondamental pour LES algèbres de Lie, Publ. Math. Inst. Hautes Étud. Sci., 111, 1-169, (2010) · Zbl 1200.22011
[13] Panyushev, D, On invariant theory of \(θ \)-groups, J. Algebr., 283, 655-670, (2005) · Zbl 1071.17005
[14] Reeder, M; Yu, J-K, Epipelagic representations and invariant theory, J. Am. Math. Soc., 27, 437-477, (2014) · Zbl 1284.22011
[15] Rozenblyum, N.: Introduction to chiral algebras. http://math.northwestern.edu/ nrozen · Zbl 0629.33011
[16] Yun, Z.: Epipelagic representation and rigid local systems, to appear in Selecta Mathematica
[17] Zhu, X, On the coherence conjecture of pappas and Rapoport, Ann. Math., 180, 1-85, (2014) · Zbl 1300.14042
[18] Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. arXiv:1603.05593 · Zbl 06854849
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.