×

zbMATH — the first resource for mathematics

Geometric Langlands in prime characteristic. (English) Zbl 1390.14044
The geometric Langlands conjecture proposed by Beilinson and Drinfeld, asserts that the derived category \(D(Bund_G^0)\) of D-modules on moduli stack \(Bun_G\) on a smooth projective curve, is equivalent to the derived cateogry \(D(QCoh(LocSys^0_{\check{G}}))\) of quasi-coherent sheaves on the moduli stack \(LocSys_{\check{G}}\) of \(\check{G}\)-local systems on \(C\), where \(\check{G}\) is the Langlands dual group of \(G\). The original conjecture is in the setting of geometry over \(\mathbb{C}\). This paper estabished a similar duality “generically” when the field is of Characteristic \(p\), where \(G\) is assumed to be semisimple and \(C\) is at least of genus \(2\). This work is a generalization of the duality in characteristic \(p\) established by Bezrukavnikov and Braverman [4] when \(G=\mathrm{GL}_n\).
The classical limit of geometric Langlands is a Fourier-Mukai type duality between Hitchin fibrations. It was established “generically” by Donagi and Pantev [14] when the field is \(\mathbb{C}\) by using transcendental methods. A feature of characteristic \(p\) D-module, is that there is a bridge between D-module and certain twisted sheaf on Hitchin fibration. This is exactly the idea of this paper (and also the work by Bezrukavnikov and Braverman [loc. cit.]), to deduce the geometric Langlands duality in characteristic p from Hitchin fibration duality. In the case of \(\mathrm{GL}_n\), the Hitchin fibration can be reduced to a Fourier-Mukai duality on Jacobian of curves, since generailly the Hitchin fiber is the Jacobian of the asccoiated spectral curve. For general \(G\), the story is more complicated. The authors established a Fourier-Mukai type duality on Beilinson 1-motive, which is a slightly generalization of abelian variety.
The equivalence between \(D(Bun_G^0)\) and \(D(QCoh(LocSys^0_{\check{G}}))\) established by the authors, is still not completely confirmed to be the geometric Langlands transform (i.e. satisfy appropriate Hecke operators conditions) conjectured by Beilinson and Drinfeld [3].

MSC:
14D24 Geometric Langlands program (algebro-geometric aspects)
22E57 Geometric Langlands program: representation-theoretic aspects
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arinkin, D., Appendix to []. · Zbl 1408.14048
[2] Arinkin, D. and Gaitsgory, D., Singular support of coherent sheaves, and the geometric Langlands conjecture, Preprint (2012), arXiv:1201.6343. · Zbl 1423.14085
[3] Beilinson, A. and Drinfeld, V., Quantization of Hitchin’s integrable system and Hecke eigensheaves, Preprint (1991), http://www.math.uchicago.edu/earinkin/langlands/.
[4] Bezrukavnikov, R. and Braverman, A., Geometric Langlands correspondence for D-modules in prime characteristic: the GL(n) case, Pure Appl. Math. Q.3 (2007), 153-179. doi:10.4310/PAMQ.2007.v3.n1.a5 · Zbl 1206.14030
[5] Bezrukavnikov, R., Mirković, I. and Rumynin, D., Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2)167 (2008), 945-991. doi:10.4007/annals.2008.167.945 · Zbl 1220.17009
[6] Bezrukavnikov, R. and Travkin, R., Quantization of Hitchin integrable system via positive characteristic, Preprint (2016), arXiv:1603.01327.
[7] Breen, L., Un théoreme d’annulation pour certains Ext de faisceaux abéliens, Ann. Sci. Éc. Norm. Supér. (4), 5, 339-352, (1975) · Zbl 0313.14001
[8] Bosch, S., Lutkebohmert, W. and Raynaud, M., Néron models, (Springer, Berlin, 1990). doi:10.1007/978-3-642-51438-8 · Zbl 0705.14001
[9] Brochard, S., Foncteur de Picard d’un champ algébrique, Math. Ann., 343, 541-602, (2009) · Zbl 1165.14023
[10] Chen, T.-H. and Zhu, X., Non-abelian Hodge theory for curves in characteristic p, Geom. Funct. Anal.25 (2015), 1706-1733. doi:10.1007/s00039-015-0343-6 · Zbl 1330.14015
[11] Deligne, P., La formule de dualité globale, in SGA 4, tome 3, Expose XVIII, (Springer, Berlin, 1973), 481-587. · Zbl 0259.14006
[12] Donagi, R. and Gaitsgory, D., The gerbe of Higgs bundles, Transform. Groups7 (2002), 109-153. doi:10.1007/s00031-002-0008-z · Zbl 1083.14519
[13] Donagi, R. and Pantev, T., Torus fibrations, gerbes, and duality (with an appendix by Dmitry Arinkin), Mem. Amer. Math. Soc.193 (2008), no. 901. · Zbl 1140.14001
[14] Donagi, R. and Pantev, T., Langlands duality for Hitchin systems, Invent. Math.189 (2012), 653-735. doi:10.1007/s00222-012-0373-8 · Zbl 1263.53078
[15] Frenkel, E., Gaitsgory, D. and Vilonen, K., Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. of Math. (2)153 (2001), 699-748. doi:10.2307/2661366 · Zbl 1070.11050
[16] Frenkel, E. and Witten, E., Geometric endoscopy and mirror symmetry, Commun. Number Theory Phys.2 (2008), 113-283. doi:10.4310/CNTP.2008.v2.n1.a3 · Zbl 1223.14014
[17] Gaitsgory, D., Outline of the proof of the geometric Langlands conjecture for\(\operatorname{GL}_{2}\), Preprint (2013), arXiv:1302.2506.
[18] Groechenig, M., Moduli of flat connections in positive characteristic, Preprint (2013), arXiv:1201.0741.
[19] Hausel, T. and Thaddeus, M., Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math.153 (2003), 197-229. doi:10.1007/s00222-003-0286-7 · Zbl 1043.14011
[20] Hitchin, N., Stable bundles and integrable systems, Duke Math. J., 54, 91-114, (1987) · Zbl 0627.14024
[21] Laumon, G., Transformation de Fourier generalisee, Preprint (1996), arXiv:alg-geom/9603004.
[22] Laumon, G. and Moret-Bailly, L., Champs algébriques, (Springer, Berlin, 2000). · Zbl 0945.14005
[23] Mukai, S., Duality between D (X) and D (X̂) with its application to Picard sheaves, Nagoya Math. J., 153-175, (1981) · Zbl 0417.14036
[24] Mukai, S., Fourier functor and its application to the moduli of bundles on an abelian variety, in Algebraic geometry, Sendai, 1985, (North-Holland, Amsterdam, 1987), 515-550.
[25] Ngô, B. C., Hitchin fibration and endoscopy, Invent. Math., 164, 399-453, (2006) · Zbl 1098.14023
[26] Ngô, B. C., Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci., 111, 1-169, (2010) · Zbl 1200.22011
[27] Ogus, A. and Vologodsky, V., Nonabelian Hodge theory in characteristic p, Publ. Math. Inst. Hautes Études Sci.106 (2007), 1-138. doi:10.1007/s10240-007-0010-z · Zbl 1140.14007
[28] Osipov, D. and Zhu, X., A categorical proof of the Parshin reciprocity laws on algebraic surfaces, Algebra Number Theory5 (2011), 289-337. doi:10.2140/ant.2011.5.289 · Zbl 1237.19007
[29] Toen, B., Derived Azumaya algebras and generators for twisted derived categories, Invent. Math., 189, 581-652, (2012) · Zbl 1275.14017
[30] Travkin, R., Quantum geometric Langlands in positive characteristic, Preprint (2011), arXiv:1110.5707.
[31] Yun, Z., Global Springer theory, Adv. Math., 228, 266-328, (2011) · Zbl 1230.14048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.