×

Nonlinear bending behavior of 3D braided rectangular plates subjected to transverse loads in thermal environments. (English) Zbl 1271.74284

Summary: Nonlinear bending behavior of 3D braided rectangular plates subjected to transverse loads is investigated. A new micro-macro-mechanical model of unit cells is suggested. In this model, a 3D braided composite may be considered as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate. The material properties of the epoxy are expressed as a linear function of temperature. Based on Reddy’s higher-order shear deformation plate theory and general von Kármán-type equations, analytical solutions for nonlinear bending behavior of simply supported 3D braided rectangular plates are obtained using mixed Galerkin-perturbation method. The numerical examples concern effects of geometric parameters, of fiber volume fraction, braiding angle and load boundary condition.

MSC:

74K20 Plates
74E30 Composite and mixture properties
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kamiya R., Cheeseman B.A., Popper P., Chou T.W.: Some recent advances in the fabrication and design of three- dimensional textile preforms: a review. Compos. Sci. Technol. 60(1), 33–47 (2000) · doi:10.1016/S0266-3538(99)00093-7
[2] Wang Y.Q., Wang A.S.D.: Spatial distribution of yarns and mechanical properties in 3D braided tubular composites. Appl. Compos. Mater. 4(2), 121–132 (1997)
[3] Yang J.M., Ma C.L., Chou T.W.: Fibre inclination model of three dimensional textile structural composites. J. Compos. Mater. 20(5), 472–484 (1986) · doi:10.1177/002199838602000505
[4] Ko, F.K., Pastore, C.M. : Structure and properties of an integrated 3-D fabric for structural composites. In: Vinson, J.R., Taya, M. (eds.) Recent Advances in Composites in the United States and Japan, ASTM STP 864, pp. 428–439. American Society for Testing and Materials, Philadelphia (1985)
[5] Chen L., Tao X.M., Choy C.L.: Mechanical analysis of 3-D composites by the finite multiphase element method. Compos. Sci. Technol. 59(16), 2383–2391 (1999) · doi:10.1016/S0266-3538(99)00087-1
[6] Chou T.W.: Microstructural Design of Fibre Composites. Cambridge University Press, Cambridge (1992)
[7] Du G.W., Ko F.K.: Unit cell geometry of 3-D braided structures. J. Reinf. Plast. Compos. 12(7), 752–768 (1993) · doi:10.1177/073168449301200702
[8] Pandey R., Hahn H.T.: Visualization of representative volume elements for 3-dimensional 4-step braided composites. Compos. Sci. Technol. 56(2), 161–170 (1996) · doi:10.1016/0266-3538(95)00137-9
[9] Mohajerjasbi S.: Fibre architecture of three-dimensional braided composites. AIAA J. 36(4), 613–617 (1998) · doi:10.2514/2.413
[10] Chen Z.R., Zhu D.C., Lu M., Ye L.: Evaluation of elastic properties of 3-D (4-step) regular braided composites by a homogenisation method. Compos. Struct. 47(1–4), 477–482 (1999) · doi:10.1016/S0263-8223(00)00026-X
[11] Kalidindi S.R., Abusafieh A.: Longitudinal and transverse moduli and strengths of low angle 3-D braided composites. J. Compos. Mater. 30(8), 885–905 (1996) · doi:10.1177/002199839603000802
[12] Zhong W.X., Yao W.A.: New solution system for plate bending. Comput. Mech. Struct. Eng. 31(2), 17–30 (1999) · doi:10.1016/B978-008043008-9/50040-5
[13] Shen H.S., Yu L.: Nonlinear bending behavior of Reissner-Mindlin plates with free edges resting on tensionless elastic foundations. Int. J. Solids Struct. 41, 4809–4825 (2004) · Zbl 1079.74577 · doi:10.1016/j.ijsolstr.2004.02.013
[14] Xiao J.R.: Boundary element analysis of unilateral supported Reissner plates on elastic foundations. Comput. Mech. 27(1), 1–10 (2001) · Zbl 1042.74056 · doi:10.1007/s004660000207
[15] Silva A.R.D., Silveira R.A.M., Gonc_alves P.B.: Numerical methods for analysis of plates on tensionless elastic foundations. Int. J. Solids Struct. 38(10–13), 2083–2100 (2001) · Zbl 1090.74692 · doi:10.1016/S0020-7683(00)00154-2
[16] Civalek, Ö.: Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26(2), 171–186 (2004) · doi:10.1016/j.engstruct.2003.09.005
[17] Donning B.M., Liu W.K.: Meshless methods for shear-deformable beams and plates. Comput. Methods Appl. Mech. Eng. 152(1–2), 47–71 (1998) · Zbl 0959.74079 · doi:10.1016/S0045-7825(97)00181-3
[18] Zhong Y., Li R., Liu Y.M., Tian B.: On new symplectic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported. Int. J. Solids Struct. 46(11–12), 2506–2513 (2009) · Zbl 1217.74077 · doi:10.1016/j.ijsolstr.2009.02.001
[19] Singh G., Rao T.V.K.S.: Large deflection behavior of thick composite plates. Compos. Struct. 8(1), 13–29 (1987) · doi:10.1016/0263-8223(87)90013-4
[20] Gorji, M.: On large deflection of symmetric composite plates under static loading. Proc. Inst. Mech. Eng. Part CMech. Eng. Sci. 200(1), 13–19 (1986) · doi:10.1243/PIME_PROC_1986_200_089_02
[21] Reddy J.N., Chao W.C.: Nonlinear bending of thick rectangular laminated composite plates. Int. J. Non-Linear Mech. 16(3–4), 291–301 (1981) · Zbl 0475.73014 · doi:10.1016/0020-7462(81)90042-1
[22] Savithri S., Varadan T.K.: Large deflection analysis of laminated composite plates. Int. J. Non-Linear Mech. 28(1), 1–12 (1993) · Zbl 0775.73130 · doi:10.1016/0020-7462(93)90002-3
[23] Shen H.S.: Non-linear bending of shear deformable laminated plates under lateral pressure and thermal loading and resting on elastic foundations. J. Strain Anal. Eng. Des. 35(2), 93–108 (2000) · doi:10.1243/0309324001514053
[24] Shen H.S.: Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments. Int. J. Mech. Sci. 44(3), 561–584 (2002) · Zbl 1022.74023 · doi:10.1016/S0020-7403(01)00103-5
[25] Shen H.S.: Nonlinear bending analysis of unsymmetric cross-ply laminated plates with piezoelectric actuators in thermal environments. Compos. Struct. 63(2), 167–177 (2004) · doi:10.1016/S0263-8223(03)00145-4
[26] Reddy J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton, FL (1997) · Zbl 0899.73002
[27] Karami G., Garnich M.: Micromechanical study of thermoelastic behavior of composites with periodic fiber waviness. Composites: Part B 36(3), 241–248 (2005) · doi:10.1016/j.compositesb.2004.09.005
[28] Lee M.S.: International Encyclopedia of Composites, vol. 6. VHC, New York (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.