×

Mappings of finite distortion: reverse inequalities for the Jacobian. (English) Zbl 1126.30014

Reverse Hölder inequalities play an essential role in the higher integrability properties of the derivative of quasiconformal and, more generally, quasiregular mappings. Generalizations of these inequalities to mappings of finite distortion are considered. A mapping \(f : \Omega \rightarrow \mathbb{R}^n\) is of finite distortion if \(f\) belongs to the space \(W^{1,1}_{\text{loc}} (\Omega)\), the Jacobian determinant \(J(x, f)\) is locally integrable and there is a measurable function \(K(x) \geq 1\), finite a.e., such that \(| Df(x)| ^n \leq Kx) J(x,f)\) a.e. To obtain counterparts for the higher integrability for the derivative of a mapping of finite distortion, the condition \(\exp(\beta K) \in L^1_{\text{loc}}(\Omega)\) for some \(\beta > 0\) is used. Under this condition it is shown that for \(n \geq 3\), \(\exp(\log^s \log(e + 1/J(x,f)) \in L^1_{\text{loc}}(\Omega)\) for some \(s = s(n) > 1\). For \(n = 2\) a stronger result, involving the multiplicity of the mapping, holds: For \(\gamma > 0\) and \(\Omega' \subset\subset \Omega\) there is \(\beta = \beta(\gamma, N(f, \Omega'))\) such that \(\log^{\gamma}(e + 1/J(x,f)) \in L^1(\Omega')\) provided that the aforementioned condition holds for this \(\beta\). The paper also contains reverse type inequalities for \(1/J(x, f)\) and \(L^1\)–integrability results for the inverses of weights. The conclusions from the reverse inequalities for the intgrebility of \(1/J(x,f)\) are optimal but examples show that integrability could be improved by other methods.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
26B10 Implicit function theorems, Jacobians, transformations with several variables
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Astala, K., Iwaniec, T., Koskela, P., and Martin, G. Mappings of BMO-bounded distortion,Math. Ann. 317(4), 703–726, (2000). · Zbl 0954.30009 · doi:10.1007/PL00004420
[2] Buckley, S. M. Estimates for operator norms on weighted spaces and reverse Jensen inequalities,Trans. Amer. Math. Soc. 340(1), 253–272, (1993). · Zbl 0795.42011 · doi:10.1090/S0002-9947-1993-1124164-0
[3] Coifman, R. and Fefferman, C. Weighted norm inequalities for maximal functions and singular integrals,Studia Math. 51, 241–250, (1974). · Zbl 0291.44007
[4] David, G. Solutions de l’equation de Beltrami avec ||{\(\mu\)}||=1,Ann. Acad. Sci. Fenn. Ser. A I Math. 13(1), 25–70, (1988). · Zbl 0619.30024 · doi:10.5186/aasfm.1988.1303
[5] Elcrat, A. and Meyers, N. Some results on the regularity for solutions of nonlinear elliptic systems and quasiregular functions,Duke Math. J. 42, 121–136, (1975). · Zbl 0347.35039 · doi:10.1215/S0012-7094-75-04211-8
[6] Faraco, D., Koskela, P., and Zhong, X. Mappings of finite distortion: The degree of regularity,Adv. Math. 90, 300–318, (2005). · Zbl 1075.30012 · doi:10.1016/j.aim.2003.12.009
[7] Federer, H. Surface area II,Trans. Amer. Math. Soc. 55, 438–456, (1944). · Zbl 0060.14003
[8] Fefferman, R. A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator,J. Amer. Math. Soc. 2(1), 127–135, (1989). · Zbl 0694.35050 · doi:10.1090/S0894-0347-1989-0955604-8
[9] Gehring, F. W. TheL p -integrability of the partial derivatives of a quasiconformal mapping,Acta Math. 130, 265–277, (1973). · Zbl 0258.30021 · doi:10.1007/BF02392268
[10] Gol’dstein, V. and Vodop’yanov, S. Quasiconformal mappings and spaces of functions with generalized first derivatives,Sibirsk. Math. Z. 17, 515–531, (1976).
[11] Heinonen, J. and Koskela, P. Sobolev mappings with integrable dilatations,Arch. Rational Mech. Anal. 125(1), 81–97, (1993). · Zbl 0792.30016 · doi:10.1007/BF00411478
[12] Heinonen, J. and Koskela, P. Weighted Sobolev and Poincaré inequalities and quasiregular mappings of polynomial type,Math. Scand. 77, 251–271, (1995). · Zbl 0860.30018
[13] Heinonen, J. and Koskela, P. Quasiconformal maps in metric spaces with controlled geometry,Acta Math. 181, 1–61, (1998). · Zbl 0915.30018 · doi:10.1007/BF02392747
[14] Hencl, S. and Malý, J. Mappings of finite distortion: Hausdorff measure of zero sets,Math. Ann. 324, 451–464, (2002). · Zbl 1017.30030 · doi:10.1007/s00208-002-0347-z
[15] Herron, D. A. and Koskela, P. Conformal capacity and the quasihyperbolic metric,Indiana Univ. Math. J. 45(2), 333–359, (1996). · Zbl 0862.30021 · doi:10.1512/iumj.1996.45.1966
[16] Iwaniec, T., Koskela, P., and Martin, G. Mappings of BMO-distortion and Beltrami type operators,J. Anal. Math. 88, 337–381, (2002). · Zbl 1028.30015 · doi:10.1007/BF02786581
[17] Iwaniec, T., Koskela, P., Martin, G., and Sbordone, C. Mappings of exponentially integrable distortion,J. London Math. Soc. 67(1), 123–136, (2003). · Zbl 1047.30010 · doi:10.1112/S0024610702003769
[18] Iwaniec, T., Koskela, P., and Onninen, J. Mappings of finite distortion: Monotonicity and continuity,Invent. Math. 144, 507–531, (2001). · Zbl 1006.30016 · doi:10.1007/s002220100130
[19] Iwaniec, T. and Martin, G.Geometric Function Theory and Nonlinear Analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. · Zbl 1045.30011
[20] Iwaniec, T. and Sbordone, C. On the integrability of the Jacobian under minimal hypotheses,Arch. Rational Mech. Anal. 119(2), 129–143, (1992). · Zbl 0766.46016 · doi:10.1007/BF00375119
[21] Iwaniec, T. and Šverák, V. On mappings with integrable dilatation,Proc. Amer. Math. Soc. 118, 181–188, (1993). · Zbl 0784.30015 · doi:10.1090/S0002-9939-1993-1160301-5
[22] Onninen, J. A note on the isoperimetric inequality,Proc. Amer. Math. Soc. 131(12), 3821–3825, (2003). · Zbl 1064.26014 · doi:10.1090/S0002-9939-03-06998-3
[23] Kallunki, S. Mappings of finite distortion: The metric definition,Ann. Acad. Sci. Fenn. Math. Diss. 131, 1–33, (2002). · Zbl 1003.30017
[24] Kauhanen, J., Koskela, P., and Malý, J. Mappings of finite distortion: Discreteness and openness,Arch. Ration. Mech. Anal. 160, 135–151, (2001). · Zbl 0998.30024 · doi:10.1007/s002050100162
[25] Kauhanen, J., Koskela, P., and Malý, J. Mappings of finite distortion: Condition N,Michigan Math. J. 49, 169–181, (2001). · Zbl 0997.30018 · doi:10.1307/mmj/1008719040
[26] Kauhanen, J., Koskela, P., Malý, J., Onninen, J., and Zhong, X. Mappings of finite distortion: Sharp Orlicz-conditions,Rev. Mat. Iberoamericana 19, 857–872, (2003). · Zbl 1059.30017 · doi:10.4171/RMI/372
[27] Koskela, P. and Malý, J. Mappings of finite distortion: The zero set of the Jacobian,J. Eur. Math. Soc. 5(2), 95–105, (2003). · Zbl 1025.30019 · doi:10.1007/s10097-002-0046-9
[28] Manfredi, J. and Villamor, E. An extension of Reshetnyak’s theorem,Indiana Univ. Math. J. 47(3), 1131–1145, (1998). · Zbl 0931.30014
[29] Martio, O. On the integrability of the derivate of a quasiregular mapping,Math. Scand. 35, 43–48, (1974). · Zbl 0296.30019
[30] Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function,Trans. Amer. Math. Soc. 165, 207–226, (1972). · Zbl 0236.26016 · doi:10.1090/S0002-9947-1972-0293384-6
[31] Reshetnyak, Yu. G. Space mappings with bounded distortion,Transl. Math. Monogr., Amer. Math. Soc.73, (1989). · Zbl 0667.30018
[32] Rickman, S.Quasiregular Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)],26: Springer-Verlag, Berlin, 1993.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.