×

Computational modeling and analysis of intracardiac flows in simple models of the left ventricle. (English) Zbl 1446.76202

Summary: Computational modeling is used to study intracardiac flows in normal and diseased left-ventricles. The left-ventricle is modeled as a semi-prolate-spheroid, and the wall motion is driven by a prescribed ventricular volume-change that consists of five stages: early (E) filling, diastasis, atrial (A) filling, isovolumetric contraction (ISVC) and systole. Simulations are carried out with a parallelized immersed-boundary flow solver that allows us to simulate this flow on a stationary Cartesian grid. The ventricular flow behavior is analyzed to reveal blood flow patterns during both filling and ejection for normal ventricles, as well as ventricles with diastolic and systolic dysfunctions. Impaired relaxation associated with early-stage diastolic dysfunction is modeled by a reduced E/A ratio, and the systolic dysfunction addressed here is obstructive hypertrophic cardiomyopathy (HOCM), where the thickened ventricular septum in the basal region obstructs the outflow tract. Simulations are also performed to study the effect of septal myectomy on the ventricular flow. We examine the characteristic features of these various conditions including vortex dynamics, ‘virtual’ color M-mode cardiography as well as mixing and transport of blood through the left-ventricle during the entire cardiac cycle.

MSC:

76Z05 Physiological flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76M20 Finite difference methods applied to problems in fluid mechanics
92C35 Physiological flow
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. Peskin, Flow patterns around heart valves: a digital computer method for solving the equations of motion., Ph.D. Thesis Albert Einstein Coll. Med., Univ. Microfilms 378, 1972 pp. 72-30.; C. Peskin, Flow patterns around heart valves: a digital computer method for solving the equations of motion., Ph.D. Thesis Albert Einstein Coll. Med., Univ. Microfilms 378, 1972 pp. 72-30.
[2] Peskin, C.; McQueen, D. M., A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 39, 372-405 (1989) · Zbl 0668.76159
[3] Li, Z.; Lai, M. C., The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171, 2, 822-842 (2001) · Zbl 1065.76568
[4] Lemmon, J. D.; Yoganathan, A. P., Three-dimensional computational model of left heart diastolic function with fluid-structure interaction, J. Biomech. Eng., 122, 109-117 (2000)
[5] Lemmon, J. D.; Yoganathan, A. P., Computational modeling of left heart diastolic function: examination of ventricular dysfunction, J. Biomech. Eng., 122, 297-303 (2000)
[6] McQueen, D.; Peskin, C., Heart Simulation by an Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Boston
[7] Saber, N. R.; Gosman, A. D.; Wood, N. B.; Kilner, P. J.; Charrier, C. L.; Firmin, D. N., Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience, Ann. Biomed. Eng., 29, 275-283 (2001)
[8] Saber, N. R.; Wood, N. B.; Gosman, A. D.; Merrifield, R. D.; Yang, G.; Charrier, C. L.; Gatahouse, P. D.; Firmin, D. N., Progess towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics, Ann. Biomed. Eng., 31, 42-52 (2003)
[9] Schenkel, T.; Malve, M.; Markl, M.; Jung, B.; Oertel, H., MRI-based cfd analysis of flow in a human left ventricle methodology and application to a healthy heart, Ann. Biomed. Eng., 37, 3, 505-515 (2009)
[10] Mihalef, V.; Ionasec, R.; Shuarma, P.; Georgescu, B.; Voigt, I.; Suehling, M.; Comaniciu, D., Patient-specific modelling of whole heart anatomy, dynamics and hemodynamics from four-dimensional cardiac CT images, J. R. Soc. Interface Focus, 1, 286-296 (2011)
[11] Domenichini, F.; Pedrizzetti, G.; Baccani, B., Three-dimensional filling flow into a model left ventricle, J. Fluid Mech., 539, 179-198 (2005) · Zbl 1075.76065
[12] Nakanura, M.; Wada, S.; Mikami, T.; Kitabatake, A.; Karino, T., Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color \(M\)-mode doppler echocardiograms, Biomech. Model. Mechanobiol., 2, 59-72 (2003)
[13] Georgiadis, M. W.J. G.; Pasipoularides, A., Computational fluid dynamics of left ventricular ejection, Ann. Biomed. Eng., 20, 81-97 (1992)
[14] Baccani, B.; Domenichini, F.; Pedrizzetti, G.; Tonti, G., Fluid dynamics of the left ventricular filling in dilated cardiomyopathy, J. Biomech., 35, 665-671 (2002)
[15] Domenichini, F.; Pedrizzetti, G., Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape, Comput. Meth. Biomech. Biomed. Eng., 14, 1, 95-101 (2011)
[16] Smiseth, O. A.; Tendera, M., Diastolic Heart Failure (2008), Springer: Springer London
[17] Maron, B., Hypertrophic cardiomyopathy: a systematic review, J. Am. Med. Assoc., 287, 10, 1308-1320 (2002)
[18] Spirito, P.; Seidman, C. E.; Mckenna, W. J.; Maron, B. J., Management of hypertrophic cardiomyopathy, N. Engl. J. Med., 30, 775-785 (1997)
[19] Talor, T.; Okino, H.; Yamaguchi, T., Three dimensional analysis of left ventricular ejection using computational fluid dynamics, J. Biomech. Eng., 116, 127-130 (1994)
[20] Watanabe, H.; Sugiura, S.; Kafuku, H.; Hisada, T., Multiphysics simulation of left ventricle filling dynamics using fluid-structure interaction finite element method, BioPhys. J., 87, 2074-2085 (2004)
[21] Pierrakos, O.; Vlachos, P. P., The effect of vortex formation on left ventricular filling and mitral valve efficiency, J. Biomed. Eng., 128, 527-539 (2006)
[22] Yoganathan, A.; He, Z.; Jones, S. C., Fluid mechanics of heart valves, Annu. Rev. Biomed. Eng., 6, 331-362 (2004)
[23] Gharib, M.; Rambod, E.; Kheradvar, A.; Sahn, D. J.; Dabiri, J. O., Optimal vortex formation as an index of cardiac health, PNAS, 103, 16, 6305-6308 (2006)
[24] Mittal, R.; Dong, H.; Bozkuittas, M.; Najiar, F. M.; Vargas, A.; Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 10, 4825-4852 (2008) · Zbl 1388.76263
[25] Zang, Y.; Street, R.; Koseff, J., A non-staggered fraction step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates, J. Comput. Phys., 114, 18-33 (1994) · Zbl 0809.76069
[26] Bronzino, J. D., The Biomedical Engineering Handbook (1999), CRC Press: CRC Press Boca, Raton
[27] Arts, T.; Hunter, W. C.; Douglas, A.; Muijtjens, A. M.M.; Reneman, R. S., Description of the deformation of the left ventricle by a kinematic model, J. Biomech., 25, 10, 1119-1127 (1992)
[28] Domenichini, F.; Querzoli, G.; Genedese, A. G.; Pedrizzetti, G., Combined experimental and numerical analysis of the flow structure into the left ventricle, J. Biomech., 40, 1988-1994 (2007)
[29] Mandinov, L.; Eberli, F. R.; Seiler, C.; Hess, O. M., Review: diastolic heart failure, Cardiovasc. Res., 45, 813-825 (2000)
[30] Garcia-Rubira, J.; Molano, F.; Espina, A.; Calvo, R.; Gonzalez-Valday, M.; Garcia-Martinez, J. T.; Cruz, J. M., Abnormal filling pattern of the left ventricle and outcome in acute myocardial infarction., Int. J. Cardiol., 61, 143-149 (1997)
[31] Maron, B. J.; Maron, M. S.; Wigle, E. D.; Braunwald, E., The 50-year history, controversy, and clinical implication of left ventricular outflow tract obstruction in hypertrophic cardiomyopathy, J. Am. Coll. Cardiol., 54, 3, 191-200 (2009)
[32] Sherrid, M. V., Pathophysiology and treatment of hypertrophic cardiomyopathy, Prog. Cardiovasc. Dis., 49, 2, 123-151 (2006)
[33] Ommen, S. R.; Shah, P. M.; Tajik, A. J., Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: past, present and future, Heart, 94, 1276-1281 (2008)
[34] Sherrid, M. V.; Pinzon, O. W.; Shah, A.; Chaudhry, F. A., Reflections of inflection in hypertrophic cardiomyopathy, J. Am. Coll. Cardiol., 54, 3, 212-219 (2009)
[35] Kilner, P. J.; Yang, G.; Wilkes, A. J.; Mohiaddin, R. H.; Firmin, N.; Ycoub, M. H., Asymmetric redirection of flow through the heart, Nature Lett., 404, 759-761 (2000)
[36] Doenst, T.; Spiegel, K.; Reik, M.; Markl, M.; Henning, J.; Nitzsche, S.; Beyersdorf, F.; Oertel, H., Fluid-dynamics modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction, Ann. Thorac. Surg., 87, 1187-1195 (2009)
[37] Carcia, J. M.; Smedira, N. G.; Greenberg, N. L.; Main, M.; Firstenberg, M. S.; Odabashian, J.; Thomas, J. D., Color \(M\)-mode doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation, J. Am. Coll. Cardiol., 35, 201-208 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.