×

Modeling muscle wrapping and mass flow using a mass-variable multibody formulation. (English) Zbl 1456.70013

Summary: Skeletal muscles usually wrap over multiple anatomical features, and their mass moves along the curved muscle paths during human locomotion. However, existing musculoskeletal models simply lump the mass of muscles to the nearby body segments without considering the effect of mass flow, which has been shown to induce non-negligible errors. A mass-variable multibody formulation is proposed here to simultaneously characterize muscle wrapping and mass flow effects. To achieve this goal, a novel cable element of the muscle-tendon unit, which integrates the mass flow feature with a typical Hill-type constitutive relationship, was developed based on an arbitrary Lagrangian-Eulerian description. In addition, sliding joints were used to constrain the elements to move over the underlying bone geometries. After validating the proposed modeling method using two benchmark samples, it was applied to build a large-scale lower limb musculoskeletal model, where knee joint moments were calculated and compared with isokinetic dynamometry measurements of 12 healthy males. The results of the comparison confirm that muscular mass distribution play an important role in the force transmission of muscle wrapping, and the proposed mass-variable formulation provides a better way of predicting and understanding the dynamics of musculoskeletal systems.

MSC:

70E55 Dynamics of multibody systems
74L15 Biomechanical solid mechanics

Software:

CEINMS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al Nazer, R.; Klodowski, A.; Rantalainen, T.; Heinonen, A.; Sievänen, H.; Mikkola, A., Analysis of dynamic strains in tibia during human locomotion based on flexible multibody approach integrated with magnetic resonance imaging technique, Multibody Syst. Dyn., 20, 4, 287-306 (2008) · Zbl 1347.74067
[2] Baldwin, M. A.; Clary, C.; Maletsky, L. P.; Rullkoetter, P. J., Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend, J. Biomech., 42, 14, 2341-2348 (2009)
[3] Benjamin, M., The fascia of the limbs and back – a review, J. Anat., 214, 1, 1-18 (2009)
[4] Blankevoort, L.; Huiskes, R., Ligament-bone interaction in a three-dimensional model of the knee, J. Biomech. Eng., 113, 3, 263-269 (1991)
[5] Czaplicki, A.; Silva, M.; Ambrósio, J.; Jesus, O.; Abrantes, J., Estimation of the muscle force distribution in ballistic motion based on a multibody methodology, Comput. Methods Biomech. Biomed. Eng., 9, 1, 45-54 (2006)
[6] Delp, S. L.; Loan, J. P.; Hoy, M. G.; Zajac, F.; Topp, E.; Rosen, J., An interactive graphics-based model of the lower extremity to study orthopedic surgical procedures, IEEE Trans. Biomed. Eng., 37, 8, 757-767 (1990)
[7] Earp, J. E.; Newton, R. U.; Cormie, P.; Blazevich, A. J., Knee angle-specific EMG normalization: the use of polynomial based EMG-angle relationships, J. Electromyogr. Kinesiol., 23, 1, 238-244 (2013)
[8] El-Rich, M.; Shirazi-Adl, A., Effect of load position on muscle forces, internal loads and stability of the human spine in upright postures, Comput. Methods Biomech. Biomed. Eng., 8, 6, 359-368 (2005)
[9] Ernst, H.; Gerhard, W., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1991), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 0729.65051
[10] Fu, K.; Zhao, Z.; Ren, G.; Xiao, Y.; Feng, T.; Yang, J.; Gasbarri, P., From multiscale modeling to design of synchronization mechanisms in mesh antennas, Acta Astronaut., 159, 156-165 (2019)
[11] Gantoi, F. M.; Brown, M. A.; Shabana, A. A., ANCF finite element/multibody system formulation of the ligament/bone insertion site constraints, J. Comput. Nonlinear Dyn., 5, 3, 31,006-31,009 (2010)
[12] Garner, B. A.; Pandy, M. G., The obstacle-set method for representing muscle paths in musculoskeletal models, Comput. Methods Biomech. Biomed. Eng., 3, 1, 1-30 (2000)
[13] Gérard, J. M.; Ohayon, J.; Luboz, V.; Perrier, P.; Payan, Y., Indentation for estimating the human tongue soft tissues constitutive law: application to a 3D biomechanical model, Lect. Notes Comput. Sci., 3078, 77-83 (2004)
[14] Gollapudi, S. K.; Lin, D. C., Experimental determination of sarcomere force-length relationship in type-I human skeletal muscle fibers, J. Biomech., 42, 13, 2011-2016 (2009)
[15] Han, M.; Hong, J.; Park, F. C., Musculoskeletal dynamics simulation using shape-varying muscle mass models, Multibody Syst. Dyn., 33, 4, 367-388 (2015)
[16] Hannam, A. G.; Stavness, I.; Lloyd, J. E.; Fels, S., A dynamic model of jaw and hyoid biomechanics during chewing, J. Biomech., 41, 5, 1069-1076 (2008)
[17] Heers, G.; O’Driscoll, S. W.; Halder, A. M.; Zhao, C.; Mura, N.; Berglund, L. J.; Zobitz, M. E.; An, K. N., Gliding properties of the long head of the biceps brachii, J. Orthop. Res., 21, 1, 162-166 (2003)
[18] Hong, D.; Ren, G., A modeling of sliding joint on one-dimensional flexible medium, Multibody Syst. Dyn., 26, 1, 91-106 (2011) · Zbl 1287.70003
[19] Hong, D.; Tang, J.; Ren, G., Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation, J. Fluids Struct., 27, 8, 1137-1148 (2011)
[20] Horsman, M. K.; Koopman, H.; van der Helm, F.; Prosé, L. P.; Veeger, H., Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity, Clin. Biomech., 22, 2, 239-247 (2007)
[21] Huang, H.; Guo, J.; Yang, J.; Jiang, Y.; Yu, Y.; Müller, S.; Ren, G.; Ao, Y., Isokinetic angle-specific moments and ratios characterizing hamstring and quadriceps strength in anterior cruciate ligament deficient knees, Sci. Rep., 7, 1, 7269 (2017)
[22] Huberti, H. H.; Hayes, W. C., Patellofemoral contact pressures. The influence of q-angle and tendofemoral contact, J. Bone Jt. Surg., Am., 66, 5, 715-724 (1984)
[23] Joyce, G. C.; Rack, P. M.H.; Westbury, D. R., The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements, J. Physiol., 204, 2, 461-474 (1969)
[24] Kłodowski, A.; Rantalainen, T.; Mikkola, A.; Heinonen, A.; Sievänen, H., Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones, Multibody Syst. Dyn., 25, 4, 395-409 (2011) · Zbl 1284.74083
[25] Kłodowski, A.; Valkeapää, A.; Mikkola, A., Pilot study on proximal femur strains during locomotion and fall-down scenario, Multibody Syst. Dyn., 28, 3, 239-256 (2012)
[26] Koolstra, J. H.; van Eijden, T., Combined finite-element and rigid-body analysis of human jaw joint dynamics, J. Biomech., 38, 12, 2431-2439 (2005)
[27] Krylow, A. M.; Sandercock, T. G., Dynamic force responses of muscle involving eccentric contraction, J. Biomech., 30, 1, 27-33 (1997)
[28] Lloyd, D. G.; Besier, T. F., An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo, J. Biomech., 36, 6, 765-776 (2003)
[29] Marieb, E. N., Human Anatomy & Physiology: Pearson New International Edition (2013), UK: Pearson Education, UK
[30] Mashima, H., Force-velocity relation and contractility in striated muscles, Jpn. J. Phys., 34, 1, 1-17 (1984)
[31] Mason, J. J.; Leszko, F.; Johnson, T.; Komistek, R. D., Patellofemoral joint forces, J. Biomech., 41, 11, 2337-2348 (2008)
[32] Michael, G.; Röhrle, O.; Daniel, F. B. Haeufle; Schmitt, S., Spreading out muscle mass within a Hill-type model: a computer simulation study, Comput. Math. Methods Med., 2012 (2012) · Zbl 1256.92011
[33] Millard, M.; Uchida, T.; Seth, A.; Delp, S. L., Flexing computational muscle: modeling and simulation of musculotendon dynamics, J. Biomech. Eng., 135, 2 (2013)
[34] Miller, R. K.; Murray, D. W.; Gill, H. S.; O’Connor, J. J.; Goodfellow, J. W., In vitro patellofemoral joint force determined by a non-invasive technique, Clin. Biomech., 12, 1, 1-7 (1997)
[35] Mohamed, A. N.A.; Brown, M. A.; Shabana, A. A., Study of the ligament tension and cross-section deformation using nonlinear finite element/multibody system algorithms, Multibody Syst. Dyn., 23, 3, 227-248 (2010) · Zbl 1376.92010
[36] Nazer, R. A.; Rantalainen, T.; Heinonen, A.; Sievänen, H.; Mikkola, A., Flexible multibody simulation approach in the analysis of tibial strain during walking, J. Biomech., 41, 5, 1036-1043 (2008)
[37] Nedel, L. P.; Thalmann, D., Real time muscle deformations using mass-spring systems, Proceedings of the Computer Graphics International 1998 (1998), Washington, DC, USA: IEEE Computer Society, Washington, DC, USA
[38] Pai, D. K., Muscle mass in musculoskeletal models, J. Biomech., 43, 11, 2093-2098 (2010)
[39] Peng, Y.; Wei, Y.; Zhou, M., Efficient modeling of cable-pulley system with friction based on arbitrary-Lagrangian-Eulerian approach, Appl. Math. Mech., 38, 12, 1785-1802 (2017)
[40] Peng, Y.; Zhao, Z.; Zhou, M.; He, J.; Yang, J.; Xiao, Y., Flexible multibody model and the dynamics of the deployment of mesh antennas, J. Guid. Control Dyn., 40, 6, 1499-1510 (2017)
[41] Piazza, S. J.; Delp, S. L., Three-dimensional dynamic simulation of total knee replacement motion during a step-up task, J. Biomech. Eng., 123, 6, 599-606 (2001)
[42] Pizzolato, C.; Lloyd, D. G.; Sartori, M.; Ceseracciu, E.; Besier, T. F.; Fregly, B. J.; Reggiani, M., CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks, J. Biomech., 48, 14, 3929-3936 (2015)
[43] Quental, C.; Folgado, J.; Ambrósio, J.; Monteiro, J., A multibody biomechanical model of the upper limb including the shoulder girdle, Multibody Syst. Dyn., 28, 1-2, 83-108 (2012)
[44] Sartori, M.; Farina, D.; Lloyd, D. G., Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization, J. Biomech., 47, 15, 3613-3621 (2014)
[45] Scholz, A.; Sherman, M.; Stavness, I.; Delp, S.; Kecskeméthy, A., A fast multi-obstacle muscle wrapping method using natural geodesic variations, Multibody Syst. Dyn., 36, 2, 195-219 (2016) · Zbl 1333.92013
[46] Serpas, F.; Yanagawa, T.; Pandy, M., Forward-dynamics simulation of anterior cruciate ligament forces developed during isokinetic dynamometry, Comput. Methods Biomech. Biomed. Eng., 5, 1, 33-43 (2002)
[47] Siebert, T.; Till, O.; Blickhan, R., Work partitioning of transversally loaded muscle: experimentation and simulation, Comput. Methods Biomech. Biomed. Eng., 17, 3, 217-229 (2014)
[48] Silva, M. P.T.; Ambrósio, J. A.C., Solution of redundant muscle forces in human locomotion with multibody dynamics and optimization tools, Mech. Based Des. Struct. Mach., 31, 3, 381-411 (2003)
[49] Suderman, B. L.; Krishnamoorthy, B.; Vasavada, A. N., Neck muscle paths and moment arms are significantly affected by wrapping surface parameters, Comput. Methods Biomech. Biomed. Eng., 15, 7, 735-744 (2012)
[50] Sueda, S.; Kaufman, A.; Pai, D. K., Musculotendon simulation for hand animation, ACM Transactions on Graphics, 1 (2008)
[51] Thelen, D. G., Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults, J. Biomech. Eng., 125, 1, 70-77 (2003)
[52] Toumi, H.; Larguech, G.; Filaire, E.; Pinti, A.; Lespessailles, E., Regional variations in human patellar trabecular architecture and the structure of the quadriceps enthesis: a cadaveric study, J. Anat., 220, 6, 632-637 (2012)
[53] Van Eijden, T. M.; Korfage, J. A.; Brugman, P., Architecture of the human jaw-closing and jaw-opening muscles, Anat. Rec., 248, 3, 464-474 (1997)
[54] Winters, J. M., An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models, Ann. Biomed. Eng., 23, 4, 359-374 (1995)
[55] Winters, T. M.; Takahashi, M.; Lieber, R. L.; Ward, S. R., Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles, J. Biomech., 44, 1, 109-115 (2011)
[56] Yang, C.; Cao, D.; Zhao, Z.; Zhang, Z.; Ren, G., A direct eigenanalysis of multibody system in equilibrium, J. Appl. Math., 2012 (2012) · Zbl 1235.70031
[57] Zajac, F. E., Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Crit. Rev. Biomed. Eng., 17, 4, 359-411 (1989)
[58] Zatsiorsky, V. M.; Prilutsky, B. I., Biomechanics of Skeletal Muscles (2012), Champaign, IL: Human Kinetics, Champaign, IL
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.