×

Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. (English) Zbl 1331.93121

Summary: This paper studies the attitude synchronization control problem for a group of spacecraft. Considering inertia uncertainties and external disturbances with unknown bounds, a decentralized adaptive control scheme is developed using nonsingular fast terminal sliding mode (NFTSM). A multispacecraft NFTSM is firstly designed, which contains the advantages of the nonsingular terminal sliding mode and the traditional linear sliding mode together. Then, the continuous decentralized adaptive NFTSM control laws with boundary layer by employing NFTSM associated with novel adaptive architecture are proposed, which can eliminate the chattering, and guarantee the attitude tracking errors converge to the regions containing the origin in finite time. At last, numerical simulations are presented to demonstrate the performance of the proposed control strategy.

MSC:

93C40 Adaptive control/observation systems
93E35 Stochastic learning and adaptive control
93A14 Decentralized systems
93D21 Adaptive or robust stabilization
37M05 Simulation of dynamical systems
37N35 Dynamical systems in control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, P., Hadaegh, F., Lau, K.: Synchronized formation rotation and attitude control of multiple free-flying spacecraft. J. Guid. Control Dyn. 22, 28-35 (1999) · doi:10.2514/2.4367
[2] Subbarao, K., Welsh, S.: Nonlinear control of motion synchronization for satellite proximity operations. J. Guid. Control Dyn. 31, 1284-1294 (2008) · Zbl 1138.35350 · doi:10.2514/1.34248
[3] Ren, W., Beard, R.: Formation feedback control for multiple spacecraft via virtual structures. IEE Proc. Control Theory Appl. 151, 357-368 (2004) · doi:10.1049/ip-cta:20040484
[4] Xin, M., Balakrishnan, S., Pernicka, H.: Position and attitude control of deep-space spacecraft formation flying via virtual structure and \[\theta -D\] θ-D technique. ASME J. Dyn. Sys. Meas. Control 129, 689-698 (2007) · doi:10.1115/1.2764509
[5] Van Dyke, M., Hall, C.: Decentralized coordinated attitude control within a formation of spacecraft. J. Guid. Control Dyn. 29, 1101-1109 (2006) · doi:10.2514/1.17857
[6] Jin, E., Jiang, X., Sun, Z.: Robust decentralized attitude coordination control of spacecraft formation. Syst. Control Lett. 57, 567-577 (2008) · Zbl 1140.93008 · doi:10.1016/j.sysconle.2007.12.006
[7] Chung, S., Ahsun, U., Slotine, J.: Application of synchronization to formation flying spacecraft: Lagrangian approach. J. Guid. Control Dyn. 32, 512-526 (2009) · doi:10.2514/1.37261
[8] Bai, H., Arcak, M., Wen, J.: Rigid body attitude coordination without inertial frame information. Automatica 44, 3170-3175 (2008) · Zbl 1153.93422 · doi:10.1016/j.automatica.2008.05.018
[9] Dimarogonasa, D., Tsiotras, P., Kyriakopoulos, K.: Leader-follower cooperative attitude control of multiple rigid bodies. Syst. Control Lett. 58, 429-435 (2009) · Zbl 1161.93002 · doi:10.1016/j.sysconle.2009.02.002
[10] Ren, W.: Formation keeping and attitude alignment for multiple spacecraft through local interactions. J. Guid. Control Dyn. 30, 633-638 (2007) · doi:10.2514/1.25629
[11] Ren, W.: Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Trans. Control Syst. Technol. 18, 383-292 (2010) · doi:10.1109/TCST.2009.2016428
[12] Du, H., Li, S.: Attitude synchronization control for a group of flexible spacecraft. Automatica 50, 646-651 (2014) · Zbl 1364.93016 · doi:10.1016/j.automatica.2013.11.022
[13] Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520-1533 (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[14] Ren, W., Beard, R., Atkins, E.: Information consensus in multi-vehicle cooperative control. IEEE Control Syst. Mag. 27, 71-82 (2007) · doi:10.1109/MCS.2007.338264
[15] Liu, Y., Jia, Y.: An iterative learning approach to formation control of multi-agent systems. Syst. Control Lett. 61, 148-154 (2012) · Zbl 1250.93011 · doi:10.1016/j.sysconle.2011.10.011
[16] Zou, A., Kumar, K.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70, 1283-1296 (2012) · Zbl 1268.93090 · doi:10.1007/s11071-012-0533-9
[17] Jiang, F., Wang, L.: Finite-time weighted average consensus with respect to a monotonic function and its application. Syst. Control Lett. 60, 718-725 (2011) · Zbl 1226.93012 · doi:10.1016/j.sysconle.2011.05.009
[18] Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55, 950-955 (2010) · Zbl 1368.93391 · doi:10.1109/TAC.2010.2041610
[19] Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47, 1706-1712 (2011) · Zbl 1226.93014 · doi:10.1016/j.automatica.2011.02.045
[20] Meng, D., Jia, Y.: Iterative learning approaches to design finite-time consensus protocols for multi-agent systems. Syst. Control Lett. 61, 187-194 (2012) · Zbl 1250.93012 · doi:10.1016/j.sysconle.2011.10.013
[21] Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 14, 219-228 (2009) · doi:10.1109/TMECH.2009.2014057
[22] Zhao, L., Hua, C.: Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dyn. 75, 311-318 (2014) · Zbl 1281.93006 · doi:10.1007/s11071-013-1067-5
[23] Zhang, B., Jia, Y., Du, J., Zhang, J.: Finite-time synchronous control for multiple manipulators with sensor saturations and a constant reference. IEEE Trans. Control Syst. Technol. 22, 1159-1165 (2014) · doi:10.1109/TCST.2013.2271447
[24] Du, H., Li, S., Ding, S.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56, 2711-2717 (2011) · Zbl 1368.70036 · doi:10.1109/TAC.2011.2159419
[25] Zhou, J., Hu, Q., Friswell, M.: Decentralized finite time attitude synchronization control of satellite formation flying. J. Guid. Control Dyn. 36, 185-195 (2013) · doi:10.2514/1.56740
[26] Venkataraman, S., Gulati, S.: Terminal sliding modes: a new approach to nonlinear control systems. In: Fifth International Conference on Advanced Robotics, pp. 443-448 (1991) · Zbl 1140.93008
[27] Man, Z., Paplinski, A., Wu, H.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39, 24642469 (1994) · Zbl 0825.93551
[28] Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73, 229-244 (2013) · Zbl 1281.70016 · doi:10.1007/s11071-013-0780-4
[29] Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust. Nonlinear Control 21, 686-702 (2011) · Zbl 1214.93100 · doi:10.1002/rnc.1624
[30] Lu, K., Xia, Y.: Finite-time attitude stabilization for rigid spacecraft. Int. J. Robust. Nonlinear Control (2013, in press). doi:10.1002/rnc.3071 · Zbl 1305.93178
[31] Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49, 3591-3599 (2013) · Zbl 1315.93045 · doi:10.1016/j.automatica.2013.09.001
[32] Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38, 2159-2167 (2002) · Zbl 1015.93006 · doi:10.1016/S0005-1098(02)00147-4
[33] Yu, X., Man, Z.: Fast terminal sliding mode control design for nonlinear dynamic systems. IEEE Trans. Circuits Syst. I 39, 261-264 (2002) · Zbl 1368.93213
[34] Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957-1964 (2005) · Zbl 1125.93423 · doi:10.1016/j.automatica.2005.07.001
[35] Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust. Nonlinear Control 21, 1865-1879 (2011) · Zbl 1237.93039 · doi:10.1002/rnc.1666
[36] Liang, H., Sun, Z., Wang, J.: Robust decentralized attitude control of spacecraft formations under time-varying topologies, model uncertainties and disturbances. Acta Astronaut. 81, 445-455 (2012) · doi:10.1016/j.actaastro.2012.08.017
[37] Zou, A., Kumar, K.: Distributed attitude coordination control for spacecraft formation flying. IEEE Trans. Aerosp. Electron. Syst. 48, 1329-1346 (2012) · doi:10.1109/TAES.2012.6178065
[38] Wu, B., Wang, D., Poh, E.: Decentralized robust adaptive control for attitude synchronization under directed communication topology. J. Guid. Control Dyn. 34, 1276-1282 (2011) · doi:10.2514/1.50189
[39] Wu, B., Wang, D., Poh, E.: Decentralized sliding-mode control for attitude synchronization in spacecraft formation. Int. J. Robust. Nonlinear Control 23, 1183-1197 (2013) · Zbl 1271.93036 · doi:10.1002/rnc.2812
[40] Schaub, H., Akella, M.R., Junkins, J.L.: Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics. J. Guid. Control Dyn. 24, 95-100 (2001) · doi:10.2514/2.4680
[41] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42, 1177-1182 (2006) · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[42] Ren, W.: Distributed attitude alignment in spacecraft formation flying. Int. J. Adapt. Control Signal Process. 21, 95-113 (2007) · Zbl 1115.93338 · doi:10.1002/acs.916
[43] Du, H., Li, S.: Finite-time attitude stabilization for a spacecraft using homogeneous method. J. Guid. Control Dyn. 35, 740-748 (2012) · Zbl 1368.93213
[44] Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991) · Zbl 0729.15001 · doi:10.1017/CBO9780511840371
[45] Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952) · Zbl 0047.05302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.