Zhang, Yong; Fang, Huajing; Jiang, Tianyu Fault detection for nonlinear networked control systems with stochastic interval delay characterisation. (English) Zbl 1307.93390 Int. J. Syst. Sci. 43, No. 5, 952-960 (2012). Summary: In this article, we are concerned with the fault detection (FD) problem for nonlinear networked control systems (NCSs) with network-induced stochastic interval delay. By employing the information of probabilistic distribution of networked-induced time-varying delay, nonlinear constraint and the FD filter, nonlinear stochastic delay system model is established. Based on the obtained nonlinear model, utilising FD filter as residual generator, FD of nonlinear NCSs is formulated as nonlinear \(H_{\infty}\)-filtering problem. Especially, the stochastic stability and prescribed \(H_{\infty}\) attenuation level are achieved using the Lyapunov functional approach, the desired FD filter is constructed in terms of certain linear matrix inequalities, which depends on not only nonlinear level but also on delay-interval and delay-interval-occurrence-rate. Numerical examples are provided to illustrate the effectiveness and applicability of proposed technique. Cited in 3 Documents MSC: 93E03 Stochastic systems in control theory (general) 93C15 Control/observation systems governed by ordinary differential equations 93C10 Nonlinear systems in control theory Keywords:fault detection; nonlinear networked control systems; non-uniformly distributed delay; linear matrix inequalities PDF BibTeX XML Cite \textit{Y. Zhang} et al., Int. J. Syst. Sci. 43, No. 5, 952--960 (2012; Zbl 1307.93390) Full Text: DOI References: [1] DOI: 10.1137/1.9781611970777 · Zbl 0816.93004 · doi:10.1137/1.9781611970777 [2] Chen J, Robust Model-based Fault Diagnosis for Dynamic Systems (1999) · Zbl 0920.93001 [3] DOI: 10.1016/j.arcontrol.2007.01.001 · doi:10.1016/j.arcontrol.2007.01.001 [4] DOI: 10.1109/TAC.2008.930190 · Zbl 1367.93696 · doi:10.1109/TAC.2008.930190 [5] DOI: 10.1002/acs.1000 · Zbl 1284.93147 · doi:10.1002/acs.1000 [6] DOI: 10.1109/JPROC.2006.887288 · doi:10.1109/JPROC.2006.887288 [7] DOI: 10.1016/S0967-0661(02)00238-1 · doi:10.1016/S0967-0661(02)00238-1 [8] DOI: 10.1049/iet-cta:20060431 · doi:10.1049/iet-cta:20060431 [9] DOI: 10.1002/rnc.1278 · Zbl 1284.93111 · doi:10.1002/rnc.1278 [10] DOI: 10.1109/TAC.2007.902766 · Zbl 1366.93659 · doi:10.1109/TAC.2007.902766 [11] DOI: 10.1016/j.automatica.2008.09.010 · Zbl 1168.93387 · doi:10.1016/j.automatica.2008.09.010 [12] DOI: 10.1016/j.na.2006.08.007 · Zbl 1123.34064 · doi:10.1016/j.na.2006.08.007 [13] DOI: 10.1109/TSP.2008.928703 · Zbl 1390.94584 · doi:10.1109/TSP.2008.928703 [14] DOI: 10.1109/TAC.2007.900839 · Zbl 1366.93215 · doi:10.1109/TAC.2007.900839 [15] DOI: 10.1109/TAC.2005.864207 · Zbl 1366.93167 · doi:10.1109/TAC.2005.864207 [16] DOI: 10.1109/TSMCB.2008.2007496 · doi:10.1109/TSMCB.2008.2007496 [17] DOI: 10.1109/37.898794 · doi:10.1109/37.898794 [18] DOI: 10.1109/TSMCB.2005.861879 · doi:10.1109/TSMCB.2005.861879 [19] DOI: 10.1049/ip-cta:20045085 · doi:10.1049/ip-cta:20045085 [20] DOI: 10.1109/TNN.2008.2002436 · doi:10.1109/TNN.2008.2002436 [21] DOI: 10.1049/iet-cta:20070298 · doi:10.1049/iet-cta:20070298 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.