zbMATH — the first resource for mathematics

Multiary turbo code fitting for unitary space-time modulation and its MAP decoding algorithm. (English) Zbl 1214.94033
Summary: Unitary space-time modulation (USTM) fits for rapid Rayleigh flat fading channels as it can realize wireless communication when neither the transmitter nor the receiver knows the channel state information (CSI). However, an intrinsic problem is that only when the signal-to-noise ratio (SNR) is high can it give an ideal bit error rate (BER) performance. The existing bit-wise processing scheme of the combination of turbo code and USTM improves the BER performance and results in an unacceptable calculation complexity, storage and time delay problem. In this paper, we propose a multiary processing scheme and its corresponding multiary MAP decoding algorithm. Simulation results verify that our scheme can reduce the system complexity while keep a good BER performance. Furthermore, we present the first analysis of the reason for the BER performance deterioration of the combination scheme at low SNR with the help of the definition of USTM.
94A14 Modulation and demodulation in information and communication theory
Full Text: DOI
[1] Telatar I E. Capacity of multi-antenna Gaussian channels. Technical Report, AT&T Bell Labs, 1995
[2] Foschini G J, Gans M J. On limits of wireless communication fading environment when using multiple antennas. Wireless Personal Commun, 1998, 6: 311–335 · doi:10.1023/A:1008889222784
[3] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans Inf Theory, 1998, 44: 744–765 · Zbl 0910.94013 · doi:10.1109/18.661517
[4] Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE J Select Areas Commun, 1998, 16: 1451–1458 · doi:10.1109/49.730453
[5] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block coding for wireless communication: performance results. IEEE J Select Areas Commun, 1999, 17: 451–460 · Zbl 0965.94004 · doi:10.1109/49.753730
[6] Jafarkhani H, Tarokh V. Multiple transmit antenna differential detection from generalized orthogonal designs. IEEE Trans Inf Theory, 2001, 47: 2626–2631 · Zbl 1018.94515 · doi:10.1109/18.945280
[7] Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Lab Tech J, 1996, 1: 41–59 · doi:10.1002/bltj.2015
[8] FRAMES Multiple access proposal for the UMTS radio interface-SMG2, Dec. 1996, Workshop on UMTS Radio Interface Technologies
[9] Marzetta T L, Hochwald B M. Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Trans Inf Theory, 1999, 45: 139–157 · Zbl 0946.94002 · doi:10.1109/18.746779
[10] Hochwald B M, Marzetta T L. Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Trans Inf Theory, 2000, 46: 543–564 · Zbl 0999.94511 · doi:10.1109/18.825818
[11] Zhang D P, Liu J, Xu H J, et al. Pair-wise error probability and its Chernoff upper bound for unitary space-time code. Sci China Inf Sci, 2010, 53: 1613–1621 · doi:10.1007/s11432-010-4020-y
[12] Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. In: IEEE Int Conf on Communications 1993 (ICC’93), Geneva, Switzerland, 1993. 1064–1070
[13] Jayaweera S K, Poor H V. Turbo (iterative) decoding of a unitary space-time code with a convolutional code. In: Vehicular Technology Conference (VTC Spring 2002), Birmingham, USA, 2002. 1020–1024
[14] Bahceci I, Duman T M. Combined turbo coding and unitary space-time modulation. IEEE Trans Commun, 2002, 50: 1244–1249 · doi:10.1109/TCOMM.2002.801484
[15] Wang J, Zhao Y, Fan S. Turbo trellis-coded unitary space-time modulation for non-coherent multiple-antenna Rayleigh fading channel. In: Proc. IEEE International Conference on Wireless Communications, Networking and Mobile Computing (WiCom’2007), Shanghai, China, 2007. 72–76
[16] Zheng L, Tse D N C. Communication on the Grassmann manifold: A geometric approach to the noncoherent multipleantenna channel. IEEE Trans Inf Theory, 2002, 48: 359–383 · Zbl 1071.94503 · doi:10.1109/18.978730
[17] Hochwald B M, Marzetta T L, Richardson T J, et al. Systematic design of unitary space-time constellations. IEEE Trans Inf Theory, 2000, 46: 1962–1973 · Zbl 1004.94517 · doi:10.1109/18.868472
[18] Hochwald B M, Sweldens W. Differential unitary space-time modulation. IEEE Trans Commun, 2000, 48: 2041–2052 · doi:10.1109/26.891215
[19] Panagos A, Kosbar K. A new design metric for unitary space-time codes. In: Int. Conf. on Wireless Communications and Mobile Computing 2006 (IWCMC’06), Vancouver, British Columbia, Canada, 2006. 671–675
[20] Bingeman M, Khandani A K. Symbol-based Turbo codes. IEEE Commun Lett, 1999, 3: 285–287 · doi:10.1109/4234.798019
[21] Bahl L, Cocke J, Jelinek F, Raviv J. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inf Theory, 1974, 20: 284–287 · Zbl 0322.94005 · doi:10.1109/TIT.1974.1055186
[22] Zhang D P, Liu J, Ji H. A simple size-reduced constellation scheme for unitary space-time modulation. In: IEEE Int. Conf. on Communication Systems 2008 (ICCS’08), Beijing, China, 2008. 87–91
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.