×

zbMATH — the first resource for mathematics

Neural-network-based control of discrete-phase concentration in a gas-particle corner flow with optimal energy consumption. (English) Zbl 07244267
Summary: This paper presents a machine learning based model for control of local bioaerosol concentration via a forced corner flow with optimal energy efficiency in an indoor environment. A recirculation zone determined by the inlet flow rate traps particles partially with one or more vortices around the corner. The profile of the recirculation zone is then determined mathematically by the minimum net mass flux principle with a grid search technique. Subsequently, the variation of the recirculation zone profile is then learned through a neural network (NN), in which data is collected from the simulation by the Eulerian-Lagrangian scheme. Moreover, a model predictive control (MPC) algorithm is implemented to achieve an optimal profile of the recirculation zone with optimal energy consumption, based on the linearized NN model. Finally, the proposed NN-MPC is implemented for simulation of removing the local bioaerosol from an indoor corner through a flow-rate-controllable airflow from ventilation outlet located on the ceiling.
MSC:
68T07 Artificial neural networks and deep learning
76T10 Liquid-gas two-phase flows, bubbly flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shui, L.; Eijkel, J. C.; van den Berg, A., Multiphase flow in microfluidic systems –control and applications of droplets and interfaces, Adv. Colloid Interface Sci., 133, 35-49 (2007)
[2] Kolev, N. I., Multiphase Flow Dynamics, Vol. 5 (2015), Springer International Publishing: Springer International Publishing Cham
[3] Sun, W.; Zhong, W.; Echekki, T., Large eddy simulation of non-premixed pulverized coal combustion in corner-fired furnace for various excess air ratios, Appl. Math. Model., 74, 694-707 (2019) · Zbl 07187212
[4] S. Wang, G. Wu, Y. Wang, Y. Zhou, H. Qi, D. Li, CFD for Multiphase Flow Transport of Buried Crude Oil Pipeline Leakage, ICPTT, 2012, pp. 861-874.
[5] Yan, Y.; Li, X.; Ito, K., Numerical investigation of indoor particulate contaminant transport using the Eulerian-Eulerian and Eulerian-Lagrangian two-phase flow models, Exp. Comput. Multiph. Flow, 2, 31-40 (2019)
[6] Crowe, C. T.; Schwarzkopf, J. D.; Sommerfeld, M.; Tsuji, Y., Multiphase Flows with Droplets and Particles (2011), CRC Press
[7] Mamonova, E. E.; Soudakov, V. G.; Voyevodin, A. V., Vortex flow on the wing of aircraft and flow control to improve lift properties, J. Phys. Conf. Ser., 1268, Article 012067 pp. (2019)
[8] Sen, M.; Shan, H. S., A review of electrochemical macro- to micro-hole drilling processes, Int. J. Mach. Tools Manuf., 45, 137-152 (2005)
[9] Schadow, K. C.; Gutmark, E., Combustion instability related to vortex shedding in dump combustors and their passive control, Prog. Energy Combust. Sci., 18, 117-132 (1992)
[10] Noack, B. R.; Mezić, I.; Tadmor, G.; Banaszuk, A., Optimal mixing in recirculation zones, Phys. Fluids, 16, 867-888 (2004) · Zbl 1186.76397
[11] Jansen, J.-D.; Bosgra, O. H.; Van den Hof, P. M.J., Model-based control of multiphase flow in subsurface oil reservoirs, J. Process Control, 18, 846-855 (2008)
[12] Busto, S.; Stabile, G.; Rozza, G.; Vázquez-Cendón, M. E., POD-Galerkin Reduced order methods for combined Navier-Stokes transport equations based on a hybrid FV-FE solver, Comput. Math. Appl., 79, 256-273 (2020)
[13] Kim, J.; Bewley, T. R., A linear systems approach to flow control, Annu. Rev. Fluid Mech., 39, 383-417 (2006) · Zbl 1296.76074
[14] Huang, S.-C.; Kim, J., Control and system identification of a separated flow, Phys. Fluids, 20, Article 101509 pp. (2008) · Zbl 1182.76334
[15] Sasaki, K.; Morra, P.; Cavalieri, A. V.G.; Hanifi, A.; Henningson, D. S., On the role of actuation for the control of streaky structures in boundary layers, J. Fluid Mech., 883, A34 (2020) · Zbl 1430.76327
[16] McClellan, A. R.; Lorenzetti, J.; Pavone, M.; Farhat, C., Projection-Based Model Order Reduction for Flight Dynamics and Model Predictive Control, AIAA Scitech 2020 Forum (2020), American Institute of Aeronautics and Astronautics
[17] Duraisamy, K.; Iaccarino, G.; Xiao, H., Turbulence modeling in the age of data, Annu. Rev. Fluid Mech., 51, 357-377 (2019) · Zbl 1412.76040
[18] Kutz, J. N., Deep learning in fluid dynamics, J. Fluid Mech., 814, 1-4 (2017) · Zbl 1383.76380
[19] Singh, A. P.; Medida, S.; Duraisamy, K., Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils, AIAA J., 55, 2215-2227 (2017)
[20] Tracey, B. D.; Duraisamy, K.; Alonso, J. J., A Machine Learning Strategy to Assist Turbulence Model Development, 53rd AIAA Aerospace Sciences Meeting (2015), American Institute of Aeronautics and Astronautics
[21] Brunton, S. L.; Noack, B. R.; Koumoutsakos, P., Machine learning for fluid mechanics, Annu. Rev. Fluid Mech., 52, 477-508 (2020) · Zbl 1439.76138
[22] Gautier, N.; Aider, J. L.; Duriez, T.; Noack, B. R.; Segond, M.; Abel, M., Closed-loop separation control using machine learning, J. Fluid Mech., 770, 442-457 (2015)
[23] Lee, C.; Kim, J.; Babcock, D.; Goodman, R., Application of neural networks to turbulence control for drag reduction, Phys. Fluids, 9, 1740-1747 (1997)
[24] Suh, Yong K., Periodic motion of a point vortex in a corner subject to a potential flow, J. Phys. Soc. Japan, 62, 3441-3445 (1993)
[25] Zhao, J.; Cai, W.; Jiang, Y., Study on corner vortex enlarging process of 2D square Rayleigh-Bénard cells filled with air in transient states, Int. J. Heat Mass Transfer, 129, 599-609 (2019)
[26] Deliceoğlu, A.; Çelik, E.; Gürcan, F., Singular treatment of viscous flow near the corner by using matched eigenfunctions, Proc. Inst. Mech. Eng. C, 233, 1660-1676 (2018)
[27] Rubin, S. G., Incompressible flow along a corner, J. Fluid Mech., 26, 97-110 (2006) · Zbl 0139.44103
[28] Chung, K. M.; Su, K.-C., An experimental study on transonic swept convex-corner flows, Aerosp. Sci. Technol., 84, 565-569 (2019)
[29] Vegendla, S. N.P.; Heynderickx, G. J.; Marin, G. B., Comparison of Eulerian-Lagrangian and Eulerian-Eulerian method for dilute gas-solid flow with side inlet, Comput. Chem. Eng., 35, 1192-1199 (2011)
[30] Cox, C. S.; Wathes, C. M., Bioaerosols Handbook (1995), Taylor & Francis
[31] Brennen, C. E., Fundamentals of Multiphase Flow (2005), Cambridge university press · Zbl 1127.76001
[32] Samadi, S.; Wouters, I. M.; Heederik, D. J., A review of bio-aerosol exposures and associated health effects in veterinary practice, Ann. Agric. Environ. Med., 20, 206-221 (2013)
[33] Okten, S.; Asan, A., Airborne fungi and bacteria in indoor and outdoor environment of the Pediatric Unit of Edirne Government Hospital, Environ. Monit. Assess., 184, 1739-1751 (2012)
[34] Jones, A. P., Indoor air quality and health, Atmos. Environ., 33, 4535-4564 (1999)
[35] Nazaroff, W. W., Indoor bioaerosol dynamics, Indoor Air, 26, 61-78 (2016)
[36] Nazaroff, W. W., Indoor particle dynamics, Indoor Air, 14, Suppl. 7, 175-183 (2004)
[37] Mensah-Attipoe, J.; Saari, S.; Veijalainen, A. M.; Pasanen, P.; Keskinen, J.; Leskinen, J. T.T.; Reponen, T., Release and characteristics of fungal fragments in various conditions, Sci. Total Environ., 547, 234-243 (2016)
[38] Li, Y.; Jin, X.; Yang, L.; Du, X.; Yang, Y., Indoor and outdoor particle concentration distributions of a typical meeting room during haze and clear-sky days, Sci. China Technol. Sci., 60, 355-362 (2017)
[39] Pham, T.-D.; Lee, B.-K., Advanced removal of C. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-doped TiO_2 /PU under visible irradiation, Chem. Eng. J., 286, 377-386 (2016)
[40] Feigley, C.; Khan, J.; Salzberg, D.; Hussey, J.; Attaway, H.; Steed, L.; Schmidt, M.; Michels, H., Experimental tests of copper components in ventilation systems for microbial control, HVAC R Res., 19, 53-62 (2013)
[41] Zhang, X.; Li, H., Feasibility analysis for control of bioaerosol concentration at indoor corner via airflow from ventilation outlet with energy optimization, J. Cleaner Prod., 248, Article 119289 pp. (2020)
[42] Mei, R., An approximate expression for the shear lift force on a spherical particle at finite reynolds number, Int. J. Multiph. Flow., 18, 145-147 (1992) · Zbl 1144.76419
[43] Krupp, H., Particle adhesion theory and experiment, Adv. Colloid Interface Sci., 1, 111-239 (1967)
[44] Wickman, H. H., Deposition, adhesion, and release of bioaerosols, (Lighthart, B.; Mohr, A. J., Atmospheric Microbial Aerosols (1994), Springer US: Springer US Boston, MA), 99-165
[45] Ruck, B.; Makiola, B., Particle dispersion in a single-sided backward-facing step flow, Int. J. Multiph. Flow., 14, 787-800 (1988)
[46] Ławryńczuk, M., A family of model predictive control algorithms with artificial neural networks, Int. J. Appl. Math. Comput. Sci., 17, 217-232 (2007) · Zbl 1119.93350
[47] Ławryńczuk, M., Neural networks in model predictive control, (Nguyen, N. T.; Szczerbicki, E., Intelligent Systems for Knowledge Management (2009), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 31-63
[48] Julien, P., Concentration of very fine silts in a steady vortex, J. Hydraul. Res., 24, 255-264 (1986)
[49] Julien, P. Y., Motion of sediment particles in a Rankine combined vortex, CER; 84/85-6 (1985)
[50] Mukherjee, Y. X.; Mukherjee, S., On boundary conditions in the element-free Galerkin method, Comput. Mech., 19, 264-270 (1997) · Zbl 0884.65105
[51] Dorf, R. C., The Engineering Handbook (2005), CRC Press: CRC Press Boca Raton Fla · Zbl 1060.70001
[52] Lighthart, B.; Mohr, A. J., Atmospheric Microbial Aerosols: Theory and Applications (2012), Springer: Springer US
[53] Cardarelli, F., Cements, concrete, building stones and construction materials, (Cardarelli, F., Materials Handbook (2008), Springer London: Springer London London), 967-981
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.