×

The Ericksen model of liquid crystals with colloidal and electric effects. (English) Zbl 1375.82119

Summary: We present a robust discretization of the Ericksen model of liquid crystals with variable degree of orientation coupled with colloidal effects and electric fields. The total energy consists of the Ericksen energy, a weak anchoring (or penalized Dirichlet) energy to model colloids, and an electrical energy for a given electric field. We describe our special discretization of the total energy along with a method to compute minimizers via a discrete quasi-gradient flow algorithm which has a strictly monotone energy decreasing property. Numerical experiments are given in two and three dimensions to illustrate that the method is able to capture non-trivial defect patterns, such as the Saturn ring defect. We conclude with a rigorous proof of the {\(\Gamma\)}-convergence of our discrete energy to the continuous energy.

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

FELICITY
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ericksen, J., Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113, 2, 97-120 (1991) · Zbl 0729.76008
[2] de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals, International Series of Monographs on Physics, vol. 83 (1995), Oxford Science Publication: Oxford Science Publication Oxford, UK
[3] Goodby, J. W., Introduction to defect textures in liquid crystals, (Chen, Janglin; Cranton, Wayne; Fihn, Mark, Handbook of Visual Display Technology (2012), Springer), 1290-1314
[4] Perkins, R., Liquid crystal (2009)
[5] Senyuk, B., Liquid crystals: a simple view on a complex matter (2010)
[6] Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I., Self-assembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals, Nat. Commun., 6 (2015)
[7] Araki, T.; Tanaka, H., Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line, Phys. Rev. Lett., 97, Article 127801 pp. (2006)
[8] Bisoyi, H. K.; Kumar, S., Liquid-crystal nanoscience: an emerging avenue of soft self-assembly, Chem. Soc. Rev., 40, 306-319 (2011)
[9] Blanc, C., Colloidal crystal ordering in a liquid crystal, Science, 352, 6281, 40-41 (2016)
[10] Blinov, L., Electro-Optical and Magneto-Optical Properties of Liquid Crystals (1983), Wiley
[11] Coles, H.; Morris, S., Liquid-crystal lasers, Nat. Photonics, 4, 10, 676-685 (2010)
[12] Conradi, M.; Ravnik, M.; Bele, M.; Zorko, M.; Žumer, S.; Muševič, I., Janus nematic colloids, Soft Matter, 5, 3905-3912 (2009)
[13] Hain, M.; Glöckner, R.; Bhattacharya, S.; Dias, D.; Stankovic, S.; Tschudi, T., Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup, Opt. Commun., 188, 5-6, 291-299 (2001)
[14] Humar, M.; Muševič, I., 3d microlasers from self-assembled cholesteric liquid-crystal microdroplets, Opt. Express, 18, 26, 26995-27003 (2010)
[15] Moreno-Razo, J. A.; Sambriski, E. J.; Abbott, N. L.; Hernández-Ortiz, J. P.; de Pablo, J. J., Liquid-crystal-mediated self-assembly at nanodroplet interfaces, Nature, 485, 7396, 86-89 (2012)
[16] Muševič, I.; Škarabot, M.; Tkalec, U.; Ravnik, M.; Žumer, S., Two-dimensional nematic colloidal crystals self-assembled by topological defects, Science, 313, 5789, 954-958 (2006)
[17] Muševič, I.; Žumer, S., Liquid crystals: maximizing memory, Nat. Mater., 10, 4, 266-268 (2011)
[18] Rahimi, M.; Roberts, T. F.; Armas-Pérez, J. C.; Wang, X.; Bukusoglu, E.; Abbott, N. L.; de Pablo, J. J., Nanoparticle self-assembly at the interface of liquid crystal droplets, Proc. Natl. Acad. Sci. USA, 112, 17, 5297-5302 (2015)
[19] Shah, A. A.; Kang, H.; Kohlstedt, K. L.; Ahn, K. H.; Glotzer, S. C.; Monroe, C. W.; Solomon, M. J., Self-assembly: liquid crystal order in colloidal suspensions of spheroidal particles by direct current electric field assembly (small 10/2012), Small, 8, 10, 1457 (2012)
[20] Sun, J.; Wang, H.; Wang, L.; Cao, H.; Xie, H.; Luo, X.; Xiao, J.; Ding, H.; Yang, Z.; Yang, H., Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A-chiral nematic phase transition, Smart Mater. Struct., 23, 12, Article 125038 pp. (2014)
[21] Wang, M.; He, L.; Zorba, S.; Yin, Y., Magnetically actuated liquid crystals, Nano Lett., 14, 7, 3966-3971 (2014), pMID: 24914876
[22] Čopar, S.; Ravnik, M.; Žumer, S., Janus nematic colloids with designable valence, Materials, 7, 6, 4272 (2014)
[23] Eskandari, Z.; Silvestre, N. M.; Telo da Gama, M. M., Bonded boojum-colloids in nematic liquid crystals, Langmuir, 29, 33, 10360-10367 (2013), pMID: 23859624
[24] Furst, E. M., Directing colloidal assembly at fluid interfaces, Proc. Natl. Acad. Sci. USA, 108, 52, 20853-20854 (2011)
[25] Hamley, I. W., Nanotechnology with soft materials, Angew. Chem., Int. Ed., 42, 15, 1692-1712 (2003)
[26] Hiemenz, P. C.; Rajagopalan, R., Principles of Colloid and Surface Chemistry (1997), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York, Basel, Hong Kong
[27] Jeong, J.; Gross, A.; Wei, W.-S.; Tu, F.; Lee, D.; Collings, P.; Yodh, A., Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming, Soft Matter (2015)
[28] Kuksenok, O. V.; Ruhwandl, R. W.; Shiyanovskii, S. V.; Terentjev, E. M., Director structure around a colloid particle suspended in a nematic liquid crystal, Phys. Rev. E, 54, 5198-5203 (1996)
[29] Liu, Q.; Senyuk, B.; Tasinkevych, M.; Smalyukh, I. I., Nematic liquid crystal boojums with handles on colloidal handlebodies, Proc. Natl. Acad. Sci. USA, 110, 23, 9231-9236 (2013)
[30] Tasinkevych, M.; Silvestre, N. M.; da Gama, M. M.T., Liquid crystal boojum-colloids, New J. Phys., 14, 7, Article 073030 pp. (2012)
[31] Wang, Y.; Wang, Y.; Breed, D. R.; Manoharan, V. N.; Feng, L.; Hollingsworth, A. D.; Weck, M.; Pine, D. J., Colloids with valence and specific directional bonding, Nature, 491, 7422, 51-55 (2012)
[32] Virga, E. G., Variational Theories for Liquid Crystals, vol. 8 (1994), Chapman and Hall: Chapman and Hall London · Zbl 0814.49002
[33] Calderer, M.; Golovaty, D.; Lin, F.; Liu, C., Time evolution of nematic liquid crystals with variable degree of orientation, SIAM J. Math. Anal., 33, 5, 1033-1047 (2002) · Zbl 1003.35108
[34] Ambrosio, L., Regularity of solutions of a degenerate elliptic variational problem, Manuscr. Math., 68, 1, 309-326 (1990) · Zbl 0716.49031
[35] Ambrosio, L., Existence of minimal energy configurations of nematic liquid crystals with variable degree of orientation, Manuscr. Math., 68, 1, 215-228 (1990) · Zbl 0713.49005
[36] Bauman, P.; Calderer, M. C.; Liu, C.; Phillips, D., The phase transition between chiral nematic and smectic a* liquid crystals, Arch. Ration. Mech. Anal., 165, 2, 161-186 (2002) · Zbl 1032.76007
[37] Ball, J. M.; Zarnescu, A., Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., 202, 2, 493-535 (2011) · Zbl 1263.76010
[38] Lin, F.-H., Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42, 6, 789-814 (1989) · Zbl 0703.35173
[39] Lin, F. H., On nematic liquid crystals with variable degree of orientation, Commun. Pure Appl. Math., 44, 4, 453-468 (1991) · Zbl 0733.49005
[40] Ball, J. M.; Zarnescu, A., Orientable and non-orientable director fields for liquid crystals, Proc. Appl. Math. Mech., 7, 1, 1050701-1050704 (2007)
[41] Golovaty, D.; Gross, L. K.; Hariharan, S. I.; Gartland, E. C., On instability of a bend Fréedericksz configuration in nematic liquid crystals, J. Math. Anal. Appl., 255, 2, 391-403 (2001) · Zbl 0976.76009
[42] Hardt, R.; Kinderlehrer, D.; Lin, F.-H., Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré (C), Anal. Non Linéaire, 5, 4, 297-322 (1988) · Zbl 0657.49018
[43] Hardt, R.; Kinderlehrer, D.; Luskin, M., Remarks about the mathematical theory of liquid crystals, (Hildebrandt, S.; Kinderlehrer, D.; Miranda, M., Calculus of Variations and Partial Differential Equations. Calculus of Variations and Partial Differential Equations, Lecture Notes in Mathematics, vol. 1340 (1988), Springer: Springer Berlin, Heidelberg), 123-138
[44] Lin, F.-H.; Liu, C., Static and dynamic theories of liquid crystals, J. Partial Differ. Equ., 14, 4, 289-330 (2001) · Zbl 1433.82014
[45] Badia, S.; Guillén-González, F. M.; Gutiérrez-Santacreu, J. V., An overview on numerical analyses of nematic liquid crystal flows, Arch. Comput. Methods Eng., 18, 3, 285-313 (2011) · Zbl 1284.76247
[46] Barrett, J. W.; Feng, X.; Prohl, A., Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation, ESAIM: Math. Model. Numer. Anal., 40, 175-199 (2006) · Zbl 1097.35082
[47] Cruz, P. A.; Tomé, M. F.; Stewart, I. W.; McKee, S., Numerical solution of the Ericksen-Leslie dynamic equations for two-dimensional nematic liquid crystal flows, J. Comput. Phys., 247, 109-136 (2013) · Zbl 1349.76447
[48] Ramage, A.; Gartland, E. C., A preconditioned nullspace method for liquid crystal director modeling, SIAM J. Sci. Comput., 35, 1, B226-B247 (2013) · Zbl 1276.82061
[49] Adler, J. H.; Atherton, T. J.; Benson, T. R.; Emerson, D. B.; MacLachlan, S. P., Energy minimization for liquid crystal equilibrium with electric and flexoelectric effects, SIAM J. Sci. Comput., 37, 5, S157-S176 (2015) · Zbl 1446.76065
[50] Adler, J. H.; Atherton, T. J.; Emerson, D. B.; MacLachlan, S. P., An energy-minimization finite-element approach for the Frank-Oseen model of nematic liquid crystals, SIAM J. Numer. Anal., 53, 5, 2226-2254 (2015) · Zbl 1327.76015
[51] Adler, J. H.; Emerson, D. B.; MacLachlan, S. P.; Manteuffel, T. A., Constrained optimization for liquid crystal equilibria, SIAM J. Sci. Comput., 38, 1, B50-B76 (2016) · Zbl 1427.76028
[52] Bartels, S., Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces, Math. Comput., 79, 271, 1263-1301 (2010) · Zbl 1211.65151
[53] Cohen, R.; Lin, S.-Y.; Luskin, M., Relaxation and gradient methods for molecular orientation in liquid crystals, Comput. Phys. Commun., 53, 13, 455-465 (1989)
[54] Lin, S.-Y.; Luskin, M., Relaxation methods for liquid crystal problems, SIAM J. Numer. Anal., 26, 6, 1310-1324 (1989) · Zbl 0685.65058
[55] Alouges, F., A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case, SIAM J. Numer. Anal., 34, 5, 1708-1726 (1997) · Zbl 0886.35010
[56] González, F. M.G.; Gutiérrez-Santacreu, J. V., A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model, ESAIM: Math. Model. Numer. Anal., 47, 1433-1464 (2013) · Zbl 1290.82031
[57] Liu, C.; Walkington, N., Approximation of liquid crystal flows, SIAM J. Numer. Anal., 37, 3, 725-741 (2000) · Zbl 1040.76036
[58] Walkington, N. J., Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations, ESAIM: Math. Model. Numer. Anal., 45, 523-540 (2011) · Zbl 1267.76008
[59] Yang, X.; Forest, M. G.; Liu, C.; Shen, J., Shear cell rupture of nematic liquid crystal droplets in viscous fluids, J. Non-Newton. Fluid Mech., 166, 9-10, 487-499 (2011) · Zbl 1282.76061
[60] Yang, X.; Forest, M. G.; Li, H.; Liu, C.; Shen, J.; Wang, Q.; Chen, F., Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids, J. Comput. Phys., 236, 1-14 (2013) · Zbl 1286.65112
[61] Nochetto, R. H.; Walker, S. W.; Zhang, W., A finite element method for nematic liquid crystals with variable degree of orientation, SIAM J. Numer. Anal., 55, 1357-1386 (2017) · Zbl 1453.82090
[62] Nochetto, R. H.; Walker, S. W.; Zhang, W., Numerics for liquid crystals with variable degree of orientation, (Symposium NN - Mathematical and Computational Aspects of Materials Science. Symposium NN - Mathematical and Computational Aspects of Materials Science, MRS Proceedings, vol. 1753 (2015))
[63] Bethuel, F.; Brezis, H.; Hélein, F., Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13 (1994), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 0802.35142
[64] Brezis, H.; Coron, J.-M.; Lieb, E. H., Harmonic maps with defects, Commun. Math. Phys., 107, 4, 649-705 (1986) · Zbl 0608.58016
[65] Schoen, R.; Uhlenbeck, K., A regularity theory for harmonic maps, J. Differ. Geom., 17, 2, 307-335 (1982) · Zbl 0521.58021
[66] Tojo, K.; Furukawa, A.; Araki, T.; Onuki, A., Defect structures in nematic liquid crystals around charged particles, Eur. Phys. J. E, 30, 1, 55-64 (2009)
[67] Braides, A., Gamma-Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications, vol. 22 (2002), Oxford Scholarship · Zbl 1198.49001
[68] Gu, Y.; Abbott, N. L., Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals, Phys. Rev. Lett., 85, 4719-4722 (2000)
[69] Biscari, P.; Cesana, P., Ordering effects in electric splay Freedericksz transitions, Contin. Mech. Thermodyn., 19, 5, 285-298 (2007) · Zbl 1160.76310
[70] Hoogboom, J.; Elemans, J. A.; Rowan, A. E.; Rasing, T. H.; Nolte, R. J., The development of self-assembled liquid crystal display alignment layers, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 365, 1855, 1553-1576 (2007)
[71] Ciarlet, P.; Raviart, P.-A., Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng., 2, 1, 17-31 (1973) · Zbl 0251.65069
[72] Strang, G.; Fix, G., An Analysis of the Finite Element Method (2008), Wellesley-Cambridge · Zbl 0278.65116
[73] Korotov, S.; Křížek, M.; Neittaanmäkia, P., Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comput., 70, 233, 107-119 (2001) · Zbl 1001.65125
[74] Brandts, J. H.; Korotov, S.; Křížek, M., The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem, Linear Algebra Appl., 429, 10, 2344-2357 (2008), special Issue in honor of Richard S. Varga · Zbl 1154.65086
[75] Wise, S. M.; Wang, C.; Lowengrub, J. S., An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47, 3, 2269-2288 (2009) · Zbl 1201.35027
[76] Shen, J.; Yang, X., Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28, 4, 1669-1691 (2010) · Zbl 1201.65184
[77] Shen, J.; Yang, X., A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities, SIAM J. Sci. Comput., 32, 3, 1159-1179 (2010) · Zbl 1410.76464
[78] Walker, S. W., FELICITY: Finite ELement Implementation and Computational Interface Tool for You
[79] Notay, Y., An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37, 123-146 (2010) · Zbl 1206.65133
[80] Napov, A.; Notay, Y., Algebraic analysis of aggregation-based multigrid, Numer. Linear Algebra Appl., 18, 3, 539-564 (2011) · Zbl 1249.65270
[81] Napov, A.; Notay, Y., An algebraic multigrid method with guaranteed convergence rate, SIAM J. Sci. Comput., 34, 2, A1079-A1109 (2012) · Zbl 1248.65037
[82] Notay, Y., Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J. Sci. Comput., 34, 4, A2288-A2316 (2012) · Zbl 1250.76139
[83] Golub, G. H.; Van Loan, C. F., Matrix Computations (2013), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD, USA · Zbl 1268.65037
[84] Alama, S.; Bronsard, L.; Lamy, X., Analytical description of the Saturn-ring defect in nematic colloids, Phys. Rev. E, 93, Article 012705 pp. (2016)
[85] VanderZee, E.; Hirani, A. N.; Guoy, D.; Ramos, E. A., Well-centered triangulation, SIAM J. Sci. Comput., 31, 6, 4497-4523 (2010) · Zbl 1253.65030
[86] Walton, S.; Hassan, O.; Morgan, K., Strategies for Generating Well Centered Tetrahedral Meshes on Industrial Geometries, 161-180 (2015), Springer International Publishing: Springer International Publishing Cham · Zbl 1327.65258
[87] Liu, A.; Joe, B., Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision, Math. Comput., 65, 215, 1183-1200 (1996) · Zbl 0858.65120
[88] Korotov, S.; Křížek, M., Global and local refinement techniques yielding nonobtuse tetrahedral partitions, Comput. Math. Appl., 50, 7, 1105-1113 (2005), Numerical Methods and Computational Mechanics · Zbl 1086.65116
[89] Mottram, N. J.; Newton, C. J.P., Introduction to Q-tensor theory (2014)
[90] De Giorgi, Ennio, Selected Papers (2006) · Zbl 1096.01015
[91] Bartels, S., Stability and convergence of finite-element approximation schemes for harmonic maps, SIAM J. Numer. Anal., 43, 1, 220-238 (2006) · Zbl 1090.35014
[92] Braides, A., Local Minimization, Variational Evolution and Γ-Convergence, Lecture Notes in Mathematics, vol. 2094 (2014), Springer · Zbl 1316.49002
[93] Dal Maso, G., An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and Their Applications, vol. 8 (1993), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 0816.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.