zbMATH — the first resource for mathematics

QCD-like theories at nonzero temperature and density. (English) Zbl 1288.81152
Summary: We investigate the properties of hot and/or dense matter in QCD-like theories with quarks in a (pseudo)real representation of the gauge group using the Nambu-Jona-Lasinio model. The gauge dynamics is modeled using a simple lattice spin model with nearest-neighbor interactions. We first keep our discussion as general as possible, and only later focus on theories with adjoint quarks of two or three colors. Calculating the phase diagram in the plane of temperature and quark chemical potential, it is qualitatively confirmed that the critical temperature of the chiral phase transition is much higher than the deconfinement transition temperature. At a chemical potential equal to half of the diquark mass in the vacuum, a diquark Bose-Einstein condensation (BEC) phase transition occurs. In the two-color case, a Ginzburg-Landau expansion is used to study the tetracritical behavior around the intersection point of the deconfinement and BEC transition lines, which are both of second order. We obtain a compact expression for the expectation value of the Polyakov loop in an arbitrary representation of the gauge group (for any number of colors), which allows us to study Casimir scaling at both nonzero temperature and chemical potential.

81V05 Strong interaction, including quantum chromodynamics
81R40 Symmetry breaking in quantum theory
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
81T28 Thermal quantum field theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B30 Statistical thermodynamics
82B27 Critical phenomena in equilibrium statistical mechanics
Full Text: DOI arXiv
[1] Alford, MG; Kapustin, A.; Wilczek, F., Imaginary chemical potential and finite fermion density on the lattice, Phys. Rev., D 59, 054502, (1999)
[2] Son, DT; Stephanov, MA, QCD at finite isospin density, Phys. Rev. Lett., 86, 592, (2001)
[3] Kogut, JB; Stephanov, MA; Toublan, D., On two-color QCD with baryon chemical potential, Phys. Lett., B 464, 183, (1999)
[4] Kogut, JB; Stephanov, MA; Toublan, D.; Verbaarschot, JJM; Zhitnitsky, A., QCD-like theories at finite baryon density, Nucl. Phys., B 582, 477, (2000)
[5] Peskin, ME, The alignment of the vacuum in theories of technicolor, Nucl. Phys., B 175, 197, (1980)
[6] Bijnens, J.; Lu, J., Technicolor and other QCD-like theories at next-to-next-to-leading order, JHEP, 11, 116, (2009)
[7] Kondratyuk, LA; Giannini, MM; Krivoruchenko, MI, The SU(2) color superconductivity, Phys. Lett., B 269, 139, (1991)
[8] Ratti, C.; Weise, W., Thermodynamics of two-colour QCD and the Nambu Jona-Lasinio model, Phys. Rev., D 70, 054013, (2004)
[9] Sun, G-f; He, L.; Zhuang, P., BEC-BCS crossover in the Nambu-Jona-Lasinio model of QCD, Phys. Rev., D 75, 096004, (2007)
[10] Brauner, T.; Fukushima, K.; Hidaka, Y., Two-color quark matter: U(1)A restoration, superfluidity and quarkyonic phase, Phys. Rev., D 80, 074035, (2009)
[11] Andersen, JO; Brauner, T., Phase diagram of two-color quark matter at nonzero baryon and isospin density, Phys. Rev., D 81, 096004, (2010)
[12] Nishimura, H.; Ogilvie, MC, A PNJL model for adjoint fermions with periodic boundary conditions, Phys. Rev., D 81, 014018, (2010)
[13] Mócsy, A.; Sannino, F.; Tuominen, K., Confinement versus chiral symmetry, Phys. Rev. Lett., 92, 182302, (2004)
[14] Sannino, F.; Tuominen, K., Tetracritical behavior in strongly interacting theories, Phys. Rev., D 70, 034019, (2004)
[15] Gocksch, A.; Ogilvie, M., An effective strong coupling lattice model for finite temperature QCD, Phys. Lett., B 141, 407, (1984)
[16] Dumitru, A.; Hatta, Y.; Lenaghan, J.; Orginos, K.; Pisarski, RD, Deconfining phase transition as a matrix model of renormalized Polyakov loops, Phys. Rev., D 70, 034511, (2004)
[17] Fukushima, K.; Hidaka, Y., A model study of the sign problem in the mean-field approximation, Phys. Rev., D 75, 036002, (2007)
[18] Fukushima, K., Relation between the Polyakov loop and the chiral order parameter at strong coupling, Phys. Rev., D 68, 045004, (2003)
[19] Gupta, S.; Huebner, K.; Kaczmarek, O., Renormalized Polyakov loops in many representations, Phys. Rev., D 77, 034503, (2008)
[20] Abuki, H.; Fukushima, K., Gauge dynamics in the PNJL model: color neutrality and Casimir scaling, Phys. Lett., B 676, 57, (2009)
[21] Fukushima, K., Chiral effective model with the Polyakov loop, Phys. Lett., B 591, 277, (2004)
[22] Ratti, C.; Thaler, MA; Weise, W., Phases of QCD: lattice thermodynamics and a field theoretical model, Phys. Rev., D 73, 014019, (2006)
[23] Roessner, S.; Ratti, C.; Weise, W., Polyakov loop, diquarks and the two-flavour phase diagram, Phys. Rev., D 75, 034007, (2007)
[24] Fukushima, K., Phase diagrams in the three-flavor Nambu-Jona-Lasinio model with the Polyakov loop, Phys. Rev., D 77, 114028, (2008)
[25] Megias, E.; Ruiz Arriola, E.; Salcedo, LL, Polyakov loop in chiral quark models at finite temperature, Phys. Rev., D 74, 065005, (2006)
[26] Kogut, JB; Polonyi, J.; Wyld, HW; Sinclair, DK, Hierarchical mass scales in lattice gauge theories with dynamical light fermions, Phys. Rev. Lett., 54, 1980, (1985)
[27] Karsch, F.; Lütgemeier, M., Deconfinement and chiral symmetry restoration in an SU(3) gauge theory with adjoint fermions, Nucl. Phys., B 550, 449, (1999)
[28] Engels, J.; Holtmann, S.; Schulze, T., Scaling and Goldstone effects in a QCD with two flavours of adjoint quarks, Nucl. Phys., B 724, 357, (2005)
[29] Ünsal, M., Abelian duality, confinement and chiral symmetry breaking in a SU(2) QCD-like theory, Phys. Rev. Lett., 100, 032005, (2008)
[30] A. Lohwater, Introduction to Inequalities, Online e-book in PDF format, (1982).
[31] H. Georgi, Lie Algebras in Particle Physics, second edition Frontiers in Physics, Perseus Books, Reading Massachusetts U.S.A. (1999).
[32] Hands, S.; etal., Numerical study of dense adjoint matter in two color QCD, Eur. Phys. J., C 17, 285, (2000)
[33] Fukushima, K.; Iida, K., Larkin-ovchinnikov-fulde-ferrell state in two-color quark matter, Phys. Rev., D 76, 054004, (2007)
[34] Splittorff, K.; Son, DT; Stephanov, MA, QCD-like theories at finite baryon and isospin density, Phys. Rev., D 64, 016003, (2001)
[35] Vafa, C.; Witten, E., Parity conservation in QCD, Phys. Rev. Lett., 53, 535, (1984)
[36] Buballa, M., NJL model analysis of quark matter at large density, Phys. Rept., 407, 205, (2005)
[37] Ambjørn, J.; Olesen, P.; Peterson, C., Stochastic confinement and dimensional reduction: (I). four-dimensional SU(2) lattice gauge theory, Nucl. Phys., B 240, 189, (1984)
[38] Debbio, L.; Faber, M.; Greensite, J.; Olejník, Š, Casimir scaling vs. abelian dominance in QCD string formation, Phys. Rev., D 53, 5891, (1996)
[39] Schröder, Y., The static potential in QCD to two loops, Phys. Lett., B 447, 321, (1999)
[40] C. Anzai, Y. Kiyo and Y. Sumino, Violation of Casimir Scaling for Static QCD Potential at Three-loop Order, arXiv:1004.1562 [SPIRES].
[41] Deldar, S., Static SU(3) potentials for sources in various representations, Phys. Rev., D 62, 034509, (2000)
[42] Bali, GS, Casimir scaling of SU(3) static potentials, Phys. Rev., D 62, 114503, (2000)
[43] Piccioni, C., Casimir scaling in SU(2) lattice gauge theory, Phys. Rev., D 73, 114509, (2006)
[44] Shevchenko, VI; Simonov, YA, Casimir scaling as a test of QCD vacuum, Phys. Rev. Lett., 85, 1811, (2000)
[45] Meisinger, PN; Miller, TR; Ogilvie, MC, Phenomenological equations of state for the quark-gluon plasma, Phys. Rev., D 65, 034009, (2002)
[46] Tsai, H-M; Müller, B., Phenomenology of the three-flavour PNJL model and thermal strange quark production, J. Phys., G 36, 075101, (2009)
[47] R.N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover Publications, New York U.S.A (2006).
[48] Hands, S.; Kim, S.; Skullerud, J-I, Deconfinement in dense 2-color QCD, Eur. Phys. J., C 48, 193, (2006)
[49] Hands, S.; Kim, S.; Skullerud, J-I, Quarkyonic phase in dense two color matter, Phys. Rev., D 81, 091502, (2010)
[50] M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, Reading, Massachusetts U.S.A. (1995).
[51] McLerran, L.; Pisarski, RD, Phases of cold, dense quarks at large-\(N\)_{\(c\)}, Nucl. Phys., A 796, 83, (2007)
[52] Schaefer, B-J; Pawlowski, JM; Wambach, J., The phase structure of the Polyakov-quark-meson model, Phys. Rev., D 76, 074023, (2007)
[53] Abuki, H.; Anglani, R.; Gatto, R.; Nardulli, G.; Ruggieri, M., Chiral crossover, deconfinement and quarkyonic matter within a Nambu-Jona Lasinio model with the Polyakov loop, Phys. Rev., D 78, 034034, (2008)
[54] Creutz, M., On invariant integration over SU(\(N\)), J. Math. Phys., 19, 2043, (1978)
[55] Kogut, JB; Snow, M.; Stone, M., Mean field and Monte Carlo studies of SU(\(N\)) chiral models in three-dimensions, Nucl. Phys., B 200, 211, (1982)
[56] Damgaard, PH, The free energy of higher representation sources in lattice gauge theories, Phys. Lett., B 194, 107, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.