zbMATH — the first resource for mathematics

Two-color QCD via dimensional reduction. (English) Zbl 1309.81289
Summary: We study the thermodynamics of two-color QCD at high temperature and/or density using a dimensionally reduced superrenormalizable effective theory, formulated in terms of a coarse grained Wilson line. In the absence of quarks, the theory is required to respect the \(\operatorname{Z}(2)\) center symmetry, while the effects of quarks of arbitrary masses and chemical potentials are introduced via soft \(\operatorname{Z}(2)\) breaking operators. Perturbative matching of the effective theory parameters to the full theory is carried out explicitly, and it is argued how the new theory can be used to explore the phase diagram of two-color QCD.
81V05 Strong interaction, including quantum chromodynamics
81T28 Thermal quantum field theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
82B30 Statistical thermodynamics
Full Text: DOI arXiv
[1] Appelquist, T.; Pisarski, RD, High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics, Phys. Rev., D 23, 2305, (1981)
[2] Vuorinen, A.; Yaffe, LG, Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high temperature, Phys. Rev., D 74, 025011, (2006)
[3] Kaczmarek, O.; Karsch, F.; Laermann, E.; Lütgemeier, M., Heavy quark potentials in quenched QCD at high temperature, Phys. Rev., D 62, 034021, (2000)
[4] Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M., Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys., B 458, 90, (1996)
[5] Braaten, E.; Nieto, A., Free energy of QCD at high temperature, Phys. Rev., D 53, 3421, (1996)
[6] Kajantie, K.; Laine, M.; Rummukainen, K.; Shaposhnikov, M., 3d SU(N ) + adjoint Higgs theory and finite-temperature QCD, Nucl. Phys., B 503, 357, (1997)
[7] Kajantie, K.; Laine, M.; Rajantie, A.; Rummukainen, K.; Tsypin, M., The phase diagram of three-dimensional SU(3) + adjoint Higgs theory, JHEP, 11, 011, (1998)
[8] Kajantie, K.; Laine, M.; Rummukainen, K.; Schröder, Y., Four-loop vacuum energy density of the SU(N_{c}) + adjoint Higgs theory, JHEP, 04, 036, (2003)
[9] Pisarski, RD, Effective theory of Wilson lines and deconfinement, Phys. Rev., D 74, 121703, (2006)
[10] Kurkela, A., Framework for non-perturbative analysis of a Z(3)-symmetric effective theory of finite temperature QCD, Phys. Rev., D 76, 094507, (2007)
[11] Forcrand, P.; Kurkela, A.; Vuorinen, A., Center-symmetric effective theory for high-temperature SU(2) Yang-Mills theory, Phys. Rev., D 77, 125014, (2008)
[12] Wozar, C.; Kaestner, T.; Wipf, A.; Heinzl, T., Inverse Monte-Carlo determination of effective lattice models for SU(3) Yang-Mills theory at finite temperature, Phys. Rev., D 76, 085004, (2007)
[13] Fromm, M.; Langelage, J.; Lottini, S.; Philipsen, O., The QCD deconfinement transition for heavy quarks and all baryon chemical potentials, JHEP, 01, 042, (2012)
[14] Gross, DJ; Pisarski, RD; Yaffe, LG, QCD and instantons at finite temperature, Rev. Mod. Phys., 53, 43, (1981)
[15] Weiss, N., The effective potential for the order parameter of gauge theories at finite temperature, Phys. Rev., D 24, 475, (1981)
[16] Weiss, N., The Wilson line in finite temperature gauge theories, Phys. Rev., D 25, 2667, (1982)
[17] Megias, E.; Ruiz Arriola, E.; Salcedo, LL, The thermal heat kernel expansion and the one loop effective action of QCD at finite temperature, Phys. Rev., D 69, 116003, (2004)
[18] Nielsen, N., On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys., B 101, 173, (1975)
[19] S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev.D 15 (1977) 2929 [Erratum ibid.D 16 (1977) 1248] [INSPIRE].
[20] Bhattacharya, T.; Gocksch, A.; Korthals Altes, C.; Pisarski, RD, Interface tension in an SU(N) gauge theory at high temperature, Phys. Rev. Lett., 66, 998, (1991)
[21] Ignatius, J.; Kajantie, K.; Rummukainen, K., Cosmological QCD Z(3) phase transition in the 10 TeV temperature range?, Phys. Rev. Lett., 68, 737, (1992)
[22] Armoni, A.; Korthals Altes, CP; Patella, A., Domain walls and metastable vacua in hot orientifold field theories, JHEP, 12, 004, (2010)
[23] Korthals Altes, CP, ZQCD and universal matching to domain walls, Nucl. Phys., A 820, 219c, (2009)
[24] J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge University Press, Cambridge U.K. (2006).
[25] Bonati, C.; Cossu, G.; D’Elia, M.; Sanfilippo, F., The Roberge-Weiss endpoint in N_{f} = 2 QCD, Phys. Rev., D 83, 054505, (2011)
[26] Forcrand, P.; Philipsen, O., Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential, Phys. Rev. Lett., 105, 152001, (2010)
[27] Vuorinen, A., The pressure of QCD at finite temperatures and chemical potentials, Phys. Rev., D 68, 054017, (2003)
[28] Ipp, A.; Kajantie, K.; Rebhan, A.; Vuorinen, A., The pressure of deconfined QCD for all temperatures and quark chemical potentials, Phys. Rev., D 74, 045016, (2006)
[29] Langelage, J.; Münster, G.; Philipsen, O., Strong coupling expansion for finite temperature Yang-Mills theory in the confined phase, JHEP, 07, 036, (2008)
[30] J. Langelage, S. Lottini and O. Philipsen, Centre symmetric 3d effective actions for thermal SU(\(N\)) Yang-Mills from strong coupling series, JHEP02 (2011) 057 [Erratum ibid.1107 (2011) 014] [arXiv:1010.0951] [INSPIRE].
[31] Lottini, S.; Philipsen, O.; Langelage, J.; Langelage, J., Strong-coupling effective action(s) for SU(3) Yang-Mills, Acta Phys. Polon. Supp., 4, 721, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.