×

Sparse regression Chebyshev polynomial interval method for nonlinear dynamic systems under uncertainty. (English) Zbl 1480.65190

Summary: This paper proposes a new higher-efficiency interval method for the response bound estimation of nonlinear dynamic systems, whose uncertain parameters are bounded. This proposed method uses sparse regression and Chebyshev polynomials to help the interval analysis applied on the estimation. It is also a non-intrusive method which needs much fewer evaluations of original nonlinear dynamic systems than the other Chebyshev polynomials based interval methods. By using the proposed method, the response bound estimation of nonlinear dynamic systems can be performed more easily, even if the numerical simulation in nonlinear dynamic systems is costly or the number of uncertain parameters is higher than usual. In our approach, the sparse regression method “elastic net” is adopted to improve the sampling efficiency, but with sufficient accuracy. It alleviates the sample size required in coefficient calculation of the Chebyshev inclusion function in the sampling based methods. Moreover, some mature technologies are adopted to further reduce the sample size and to guarantee the accuracy of the estimation. So that the number of sampling, which solves the certain ordinary differential equations (ODEs), can be reduced significantly in the Chebyshev interval method. Three numerical examples are presented to illustrate the efficiency of proposed interval method. In particular, the last two examples are high dimension uncertain problems, which can further exhibit the ability to reduce the computational cost.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65G40 General methods in interval analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hanss, M., The transformation method for the simulation and analysis of systems with uncertain parameters, Fuzzy Sets Syst., 130, 277-289 (2002) · Zbl 1015.65005
[2] Chen, H. H., Stability and chaotic dynamics of a rate gyro with feedback control under uncertain vehicle spin and acceleration, J. Sound Vib., 273, 949-968 (2004) · Zbl 1236.93070
[3] Cheng, H.; Sandu, A., Uncertainty quantification and apportionment in air quality models using the polynomial chaos method, Environ. Model. Softw., 24, 917-925 (2009)
[4] Pettit, C. L., Uncertainty quantification in aeroelasticity: recent results and research challenges, J. Aircr., 41, 1217-1229 (2004)
[5] Astill, C. J.; Imosseir, S. B.; Shinozuka, M., Impact loading on structures with random properties, J. Struct. Mech., 1, 63-77 (2007)
[6] Sandu, A.; Sandu, C.; Ahmadian, M., Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects, Multib. Syst. Dyn., 15, 369-391 (2006)
[7] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644 (2002) · Zbl 1014.65004
[8] Liao, Q.; Zhang, D., Probabilistic collocation method for strongly nonlinear problems: I. Transform by location, Water Resour. Res., 49, 7911-7928 (2013)
[9] Yin, X.; Lee, S.; Chen, W.; Liu, W. K.; Horstemeyer, M. F., Efficient random field uncertainty propagation in design using multiscale analysis, J. Mech. Des., 131, Article 021006 pp. (2009)
[10] Li, J.; Liao, S., Response analysis of stochastic parameter structures under non-stationary random excitation, Comput. Mech., 27, 61-68 (2001) · Zbl 1007.74050
[11] Sun, T. C., A finite element method for random differential equations with random coefficients, SIAM J. Numer. Anal., 16, 1019-1035 (1979) · Zbl 0426.65079
[12] Ben-Haim, Y.; Elishakoff, I., Convex Models of Uncertainty in Applied Mechanics (1990), Elsevier Science: Elsevier Science Amsterdam · Zbl 0703.73100
[13] Chalco-Cano, Y.; Román-Flores, H., Comparation between some approaches to solve fuzzy differential equations, Fuzzy Sets Syst., 160, 1517-1527 (2009) · Zbl 1198.34005
[14] Nieto, J. J.; Khastan, A.; Ivaz, K., Numerical solution of fuzzy differential equations under generalized differentiability, Nonlinear Anal. Hybrid Syst., 3, 700-707 (2009) · Zbl 1181.34005
[15] Bede, B.; Rudas, I. J.; Bencsik, A. L., First order linear fuzzy differential equations under generalized differentiability, Inf. Sci., 177, 1648-1662 (2007) · Zbl 1119.34003
[16] Hüllermeier, E., An approach to modelling and simulation of uncertain dynamical systems, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 05, 117-137 (1997) · Zbl 1232.68131
[17] Ben-Haim, Y.; Chen, G.; Soong, T. T., Maximum structural response using convex models, J. Eng. Mech., 122, 325-333 (1996)
[18] Alefeld, G.; Mayer, G., Interval analysis: theory and applications, J. Comput. Appl. Math., 121, 421-464 (2000) · Zbl 0995.65056
[19] Wu, J.; Zhang, Y.; Chen, L.; Luo, Z., A Chebyshev interval method for nonlinear dynamic systems under uncertainty, Appl. Math. Model., 37, 4578-4591 (2013) · Zbl 1269.93031
[20] Liu, Z. Z.; Wang, T. S.; Li, J. F., Non-intrusive hybrid interval method for uncertain nonlinear systems using derivative information, Acta Mech. Sin., 32, 170-180 (2015) · Zbl 1342.65158
[21] Jackson, K. R.; Nedialkov, N. S., Some recent advances in validated methods for IVPs for ODEs, Appl. Numer. Math., 42, 269-284 (2002) · Zbl 0998.65068
[22] Nedialkov, N. S.; Jackson, K. R.; Corliss, G. F., Validated solutions of initial value problems for ordinary differential equations, Appl. Math. Comput., 105, 21-68 (1999) · Zbl 0934.65073
[23] Nedialkov, N. S., Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation (1999), Graduate Department of Computer Science, University of Toronto: Graduate Department of Computer Science, University of Toronto Toronto · Zbl 1130.65312
[24] Nedialkov, N. S.; Jackson, K. R., An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation, Reliab. Comput., 5, 289-310 (1999) · Zbl 1130.65312
[25] Berz, M.; Makino, K., Verified integration of ODEs and flows using differential algebraicmethods on high-order Taylor models, Reliab. Comput., 4, 361-369 (1998) · Zbl 0976.65061
[26] Hoefkens, J., Rigorous Numerical Analysis with High-Order Taylor Models (2001), Department of Mathematics and Department of Physics and Astronomy, Michigan State University
[27] Makino, K.; Berz, M., Efficient control of the dependency problem based on Taylor model methods, Reliab. Comput., 5, 3-12 (1999) · Zbl 0936.65073
[28] Qiu, Z.; Ma, L.; Wang, X., Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty, J. Sound Vib., 319, 531-540 (2009)
[29] Qiu, Z.; Wang, X., Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis, Int. J. Solids Struct., 42, 4958-4970 (2005) · Zbl 1119.74410
[30] Hu, J.; Qiu, Z., Non-probabilistic convex models and interval analysis method for dynamic response of a beam with bounded uncertainty, Appl. Math. Model., 34, 725-734 (2010) · Zbl 1185.74029
[31] Wu, J.; Luo, Z.; Zhang, N.; Zhang, Y., A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials, Eng. Optim., 47, 1264-1288 (2014)
[32] Liu, Z.; Wang, T.; Li, J., A trigonometric interval method for dynamic response analysis of uncertain nonlinear systems, Sci. China Phys. Mech. Astron., 58, 1-13 (2015)
[33] Wang, Z.; Tian, Q.; Hu, H., Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters, Nonlinear Dyn., 84, 527-548 (2015) · Zbl 1354.70023
[34] Fan, C.; Huang, Y.; Wang, Q., Sparsity-promoting polynomial response surface: a new surrogate model for response prediction, Adv. Eng. Softw., 77, 48-65 (2014)
[35] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58, 267-288 (1996) · Zbl 0850.62538
[36] Wang, G. G., Adaptive response surface method using inherited latin hypercube design points, J. Mech. Des., 125, 210 (2003)
[37] Sacks, J.; Welch, W. J.; Mitchell, T. J.; Wynn, H. P., Design and analysis of computer experiments, Stat. Sci., 4, 409-423 (1989) · Zbl 0955.62619
[38] Wu, J.; Luo, Z.; Zheng, J.; Jiang, C., Incremental modeling of a new high-order polynomial surrogate model, Appl. Math. Model., 40, 4681-4699 (2016) · Zbl 1459.62149
[39] Wu, J.; Luo, Z.; Zhang, N.; Zhang, Y., A new interval uncertain optimization method for structures using Chebyshev surrogate models, Comput. Struct., 146, 185-196 (2015)
[40] Gribonval, R.; Cevher, V.; Davies, M. E., Compressible distributions for high-dimensional statistics, IEEE Trans. Inf. Theory, 58, 5016-5034 (2012) · Zbl 1364.62184
[41] Witten, I. H., Classification, (Liu, L.; Özsu, M. T., Encyclopedia of Database Systems (2009), Springer: Springer US), 331-335
[43] Tibshirani, R., Regression shrinkage and selection via the lasso: a retrospective, J. R. Stat. Soc. Ser. B, 73, 273-282 (2011) · Zbl 1411.62212
[44] Gao, S.; Xu, P.; Zhou, F.; Yang, H.; Zheng, C.; Cao, W.; Tao, S.; Piao, S.; Zhao, Y.; Ji, X.; Shang, Z.; Chen, M., Quantifying nitrogen leaching response to fertilizer additions in China’s cropland, Environ. Pollut., 211, 241-251 (2016)
[45] Wu, H.; Wu, Y. X.; Liu, C. A.; Yang, G. T.; Qin, S. Y., Fast Robot localization approach based on manifold regularization with sparse area features, Cognit. Comput., 8, 856-876 (2016)
[46] Garnett, M. J.; Edelman, E. J.; Heidorn, S. J.; Greenman, C. D.; Dastur, A.; Lau, K. W.; Greninger, P.; Thompson, I. R.; Luo, X.; Soares, J.; Liu, Q.; Iorio, F.; Surdez, D.; Chen, L.; Milano, R. J.; Bignell, G. R.; Tam, A. T.; Davies, H.; Stevenson, J. A.; Barthorpe, S.; Lutz, S. R.; Kogera, F.; Lawrence, K.; McLaren-Douglas, A.; Mitropoulos, X.; Mironenko, T.; Thi, H.; Richardson, L.; Zhou, W.; Jewitt, F.; Zhang, T.; O’Brien, P.; Boisvert, J. L.; Price, S.; Hur, W.; Yang, W.; Deng, X.; Butler, A.; Choi, H. G.; Chang, J. W.; Baselga, J.; Stamenkovic, I.; Engelman, J. A.; Sharma, S. V.; Delattre, O.; Saez-Rodriguez, J.; Gray, N. S.; Settleman, J.; Futreal, P. A.; Haber, D. A.; Stratton, M. R.; Ramaswamy, S.; McDermott, U.; Benes, C. H., Systematic identification of genomic markers of drug sensitivity in cancer cells, Nature, 483, 570-575 (2012)
[47] Qiao, L.; Chen, S.; Tan, X., Sparsity preserving projections with applications to face recognition, Pattern Recogn., 43, 331-341 (2010) · Zbl 1186.68421
[48] Zou, H.; Hastie, T., Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B, 67, 301-320 (2005) · Zbl 1069.62054
[49] Vrieze, S. I., Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC), Psychol. Methods, 17, 228-243 (2012)
[50] Lin, Y.; Stadtherr, M. A., Validated solutions of initial value problems for parametric ODEs, Appl. Numer. Math., 57, 1145-1162 (2007) · Zbl 1121.65084
[51] Fang, Y.; Wang, P.; Sun, N.; Zhang, Y., Dynamics analysis and nonlinear control of an offshore boom crane, IEEE Trans. Ind. Electron., 61, 414-427 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.