×

Boundary-connected higher order Weyl semimetals in a helix-shaped phononic crystal. (English) Zbl 07771863

Summary: The proposal of higher-order topology leads to intriguing wave propagation properties beyond the conventional bulk-boundary principle in condensed matter physics. Theoretical and experimental models have been conducted to reveal exotic higher-order hinge and corner states in lower dimensions. Meanwhile, this concept is extended to semimetals and verified in platforms like acoustic and photonic systems. However, most existing schemes are confined to \(C_{\mathrm{n}}\)-symmetric-like frameworks. Here a phononic higher-order Weyl semimetal (HOWSM) is put forward by introductions of artificial gauge flux shape. Distinguished from most existing schemes, the traditional two-dimensional lattice with a vertical screw-extending operation is deformed, which guarantees the emergence of higher-order Weyl points. The invariant index is utilized to measure different phases between non-trivial topological and normal insulators visibly. Simulation results indicate that the structure supports robust hinge wave transmission in a piling sample. This work brings new approaches for constructing HOWSMs and enriches the potential applications in manufacturing high-performance acoustic devices.
© 2023 Wiley-VCH GmbH

MSC:

81-XX Quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M.Hasan, C.Kane, Rev. Mod. Phys.2010, 82, 3045.
[2] W.Zhu, X.Fang, D.Li, Y.Sun, Y.Li, Y.Jing, H.Chen, Phys. Rev. Lett.2018, 121, 124501.
[3] X.Qi, S.Zhang, Rev. Mod. Phys.2011, 83, 1057.
[4] L.Wu, X.Hu, Phys. Rev. Lett.2015, 114, 223901.
[5] H.Yang, Z.Li, Y.Liu, Y.Cao, P.Yan, Phys. Rev.2020, 2, 022028(R).
[6] Y.Yang, Z.Gao, H.Xue, L.Zhang, M.He, Z.Yang, R.Singh, Y.Chong, B.Zhang, H.Chen, Nature2019, 565, 622.
[7] B.Xia, T.Liu, G.Huang, H.Dai, J.Jiao, X.Zang, D.Yu, S.Zheng, J.Liu, Phys. Rev. B2017, 96, 094106.
[8] S. H.Mousavi, A. B.Khanikaev, Z.Wang, Nat. Commun.2015, 6, 8682.
[9] Y. E.Kraus, Y.Lahini, Z.Ringel, M.Verbin, O.Zilberberg, Phys. Rev. Lett.2012, 109,106402.
[10] M.Verbin, O.Zilberberg, Y. E.Kraus, Y.Lahini, Y.Silberberg, Phys. Rev. Lett.2013, 110, 076403.
[11] Z.Zhang, B.Wu, J.Song, H.Jiang, Phys. Rev. B2019, 100, 184202.
[12] W. A.Benalcazar, B. A.Bernevig, T. L.Hughes, Science2017, 357, 61.
[13] W. A.Benalcazar, B. A.Bernevig, T. L.Hughes, Phys. Rev. B2017, 96, 245115.
[14] B.Xie, H.Wang, H.Wang, X.Zhu, J.Jiang, M.Lu, Y.Chen, Phys. Rev. B2018, 98, 205147.
[15] F.Liu, K.Wakabayashi, Phys. Rev. Lett.2017, 118, 076803.
[16] X.Zhang, H.Wang, Z.Lin, Y.Tian, B.Xie, M.Lu, Y.Chen, J.Jiang, Nat. Phys.2019, 15, 582.
[17] X.Chen, W.Deng, F.Shi, F.Zhao, M.Chen, J.Dong, Phys. Rev. Lett.2019, 122, 233902.
[18] C. W.Peterson, W. A.Benalcazar, T. L.Hughes, G.Bahl, Nature2018, 555, 346.
[19] Y.Yang, J.Lu, M.Yan, X.Huang, W.Deng, Z.Liu, Phys. Rev. Lett.2021, 126, 156801.
[20] Y.Qi, C.Qiu, M.Xiao, H.He, M.Ke, Z.Liu, Phys. Rev. Lett.2020, 124, 206601.
[21] Z.Wang, H.Li, Z.Wang, Z.Liu, J.Luo, J.Huang, X.Wang, R.Wang, H.Yang, Phys. Rev. B2021, 104, L161401.
[22] Z.Wang, A.Alexandradinata, R. J.Cava, B. A.Bernevig, Nature2016, 532, 189.
[23] S. M.Young, S.Zaheer, J. C. Y.Teo, C. L.Kane, E. J.Mele, A. M.Rappe, Phys. Rev. Lett.2012, 108, 140405
[24] C.Fang, L.Lu, J.Liu, L.Fu, Nat. Phys.2016, 12, 936.
[25] A. A.Soluyanov, D.Gresch, Z.Wang, Q.Wu, M.Troyer, X.Dai, B. A.Bernevig, Nature2015, 527, 495.
[26] J.Noh1, S.Huang, D.Leykam, Y. D.Chong, K. P.Chen, M. C.Rechtsman, Nat. Phys.2017, 13, 611.
[27] H.Wang, Z.Lin, B.Jiang, G.Guo, J.Jiang, Phys. Rev. Lett.2020, 125, 146401.
[28] S. A.Akbar Ghorashi, T.Li, T. L.Hughes, Phys. Rev. Lett.2020, 125, 266804.
[29] Q.Wei, X.Zhang, W.Deng , J.Lu , X.Huang , M.Yan, G.Chen , Z.Liu , S.Jia, Nat. Mater.2021, 20, 812.
[30] L.Luo, H.Wang, Z.Lin, B.Jiang, Y.Wu, F.Li, J.Jiang, Nat. Mater.2021, 20, 794.
[31] S. A. A.Ghorashi, T.Li, M.Sato, Phys. Rev. B2021, 104, L161117.
[32] X.Li, A.Alù, APL Photonics2021, 6, 050802.
[33] Z.‐H.Wang, D.‐J.Liu, H.‐T.Teo, Q.Wang, H.‐R.Xue, B.‐L.Zhang, Phys. Rev. B2022, 105, L060101.
[34] M.Lin, T. L.Hughes, Phys. Rev. B2018, 98, 241103(R).
[35] H.Qiu, M.Xiao, F.Zhang, C.Qiu, Phys. Rev. Lett.2021, 127, 146601.
[36] W. A.Benalcazar, T.‐H.Li, T. L.Hughes, Phys. Rev. B2019, 99, 245151.
[37] T.‐H.Li, P.‐H.Zhu, W. A.Benalcazar, T. L.Hughes, Phys. Rev. B2020, 101, 115115.
[38] J.Noh, W. A.Benalcazar, S.Huang, M. J.Collins, K. P.Chen, T. L.Hughes, M. C.Rechtsman, Nat. Photonics2018, 12, 408.
[39] Y.Liu, S.‐W.Leung, F.‐F.Li, Z.‐K.Lin, X.‐F.Tao, Y.Poo, J.‐H.Jiang, Nature2021, 589, 381.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.