×

A novel global energy and local energy-based Legendre polynomial approximation for image segmentation. (English) Zbl 1458.94035

Summary: Active contour model (ACM) is a powerful segmentation method based on differential equation. This paper proposes a novel adaptive ACM to segment those intensity inhomogeneity images. Firstly, a novel signed pressure force function is presented with Legendre polynomials to control curve contraction. Legendre polynomials can approximate regional intensities corresponding to evolving curve. Secondly, global term of our model characterizes difference of Legendre coefficients, and local energy term characterizes fitting evolution curve of interested region. Final contour evolution will minimize the energy function. Thirdly, a correction term is employed to improve the performance of curve evolution according to the initial contour position, so wherever the initial contour being in the image, the object boundaries can be detected. Fourthly, our model combines the advantages of two classical models such as good topological changes and computational simplicity. The new model can classify regions with similar intensity values. Compared with traditional models, experimental results show effectiveness and efficiently of the new model.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
41A10 Approximation by polynomials
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Caselles, V.; Kimmel, R.; Sapiro, G., Geodesic active contours, International Journal of Computer Vision, 22, 1, 61-79 (1997) · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[2] Chen, W.; You, J.; Chen, B.; Pan, B.; Li, L.; Pomeroy, M.; Liang, Z., A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise, Neurocomputing, 286, 130-140 (2018) · doi:10.1016/j.neucom.2018.01.066
[3] Chen, B.; Cai, J.; Chen, W.; Li, Y., A multiplicative noise removal approach based on partial differential equation model, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.94043 · doi:10.1155/2012/242043
[4] Chen, B.; Bian, Z.; Zhou, X.; Chen, W.; Ma, J.; Liang, Z., A new Mumford-Shah total variation minimization based model for sparse-view x-ray computed tomography image reconstruction, Neurocomputing, 285, 74-81 (2018) · doi:10.1016/j.neucom.2018.01.037
[5] Zhang, X.; Liu, L.; Wu, Y., Multiple positive solutions of a singular fractional differential equation with negatively perturbed term, Mathematical and Computer Modelling, 55, 3-4, 1263-1274 (2012) · Zbl 1255.34010 · doi:10.1016/j.mcm.2011.10.006
[6] Zhang, X.; Wu, Y.; Caccetta, L., Nonlocal fractional order differential equations with changing-sign singular perturbation, Applied Mathematical Modelling, 39, 21, 6543-16552 (2015) · Zbl 1443.34014 · doi:10.1016/j.apm.2015.02.005
[7] Zhang, X.; Xu, J.; Jiang, J.; Wu, Y.; Cui, Y., The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the generalk-Hessian equations, Applied Mathematics Letters, 102, 106124 (2020) · Zbl 1440.35018 · doi:10.1016/j.aml.2019.106124
[8] Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y., Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows, Applied Mathematics Letters, 90, 229-237 (2019) · Zbl 1411.35099 · doi:10.1016/j.aml.2018.11.011
[9] Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, Journal of Mathematical Analysis and Applications, 464, 2, 1089-1106 (2018) · Zbl 1394.35021 · doi:10.1016/j.jmaa.2018.04.040
[10] Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., Existence of infinitely solutions for a modified nonlinear Schrodinger equation via dual approach, Electronic Journal of Differential Equations, 2147, 1-15 (2018) · Zbl 1398.35034
[11] Zong, Z.; Hu, F., L^p solutions of infinite time interval backward doubly stochastic differential equations under monotonicity and general increasing conditions, Journal of Mathematical Analysis and Applications, 458, 2, 1486-1511 (2018) · Zbl 1388.60102 · doi:10.1016/j.jmaa.2017.10.041
[12] Zong, Z.; Hu, F., L^p solutions of infinite time interval backward doubly stochastic differential equations, Filomat, 31, 7, 1855-1868 (2017) · Zbl 1488.60162
[13] Chan, T.; Vese, L., Active contours without edges, IEEE Transaction on Image Processing, 10, 2, 266-277 (2001) · Zbl 1039.68779 · doi:10.1109/83.902291
[14] Mumford, D.; Shah, J., Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, 42, 5, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[15] Chunming Li; Chiu-Yen Kao; Gore, J.; Zhaohua Ding, Minimization of region-scalable fitting energy for image segmentation, IEEE Transactions on Image Processing, 17, 10, 1940-1949 (2008) · Zbl 1371.94225 · doi:10.1109/TIP.2008.2002304
[16] Wang, L.; He, L.; Mishra, A.; Li, C., Active contours driven by local Gaussian distribution fitting energy, Signal Processing, 89, 12, 2435-2447 (2009) · Zbl 1197.94138 · doi:10.1016/j.sigpro.2009.03.014
[17] Zhou, S.; Wang, J.; Zhang, S.; Liang, Y.; Gong, Y., Active contour model based on local and global intensity information for medical image segmentation, Neurocomputing, 186, 107-118 (2016) · doi:10.1016/j.neucom.2015.12.073
[18] Wang, X.; Huang, D.; Xu, H., An efficient local Chan-Vese model for image segmentation, Pattern Recognition, 43, 3, 603-618 (2010) · Zbl 1185.68817 · doi:10.1016/j.patcog.2009.08.002
[19] Chunming Li; Rui Huang; Zhaohua Ding; Gatenby, J. C.; Metaxas, D. N.; Gore, J. C., A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI, IEEE Transactions on Image Processing, 20, 7, 2007-2016 (2011) · Zbl 1372.68275 · doi:10.1109/TIP.2011.2146190
[20] Zhang, K.; Zhang, L.; Lam, K. M.; Zhang, D., A level set approach to image segmentation with intensity inhomogeneity, IEEE Transactions on Cybernetics, 46, 2, 546-557 (2016) · doi:10.1109/TCYB.2015.2409119
[21] Mukherjee, S.; Acton, S. T., Region based segmentation in presence of intensity inhomogeneity using Legendre polynomials, IEEE Signal Processing Letters, 22, 3, 298-302 (2015) · doi:10.1109/lsp.2014.2346538
[22] Shi, N.; Pan, J., An improved active contours model for image segmentation by level set method, Optik, 127, 3, 1037-1042 (2016) · doi:10.1016/j.ijleo.2015.09.184
[23] Chen, B.; Zhang, M.; Chen, W.; Pan, B.; Li, L. C.; Wei, X.; Lai, J.; Liu, C.; Chen, X.; Zhou, J.; Tan, T.; Zheng, N.; Zha, H., A novel adaptive segmentation method based on Legendre polynomials approximation, Pattern Recognition and Computer Vision. PRCV 2018. Pattern Recognition and Computer Vision. PRCV 2018, Lecture Notes in Computer Science, 11256, 297-308 (2018), Cham: Springer, Cham · doi:10.1007/978-3-030-03398-9_26
[24] Zhang, K.; Zhang, L.; Song, H.; Zhou, W., Active contours with selective local or global segmentation: a new formulation and level set method, Image and Vision Computing, 28, 4, 668-676 (2010) · doi:10.1016/j.imavis.2009.10.009
[25] Ren, Z., Adaptive active contour model driven by fractional order fitting energy, Signal Processing, 117, 138-150 (2015) · doi:10.1016/j.sigpro.2015.05.009
[26] Dietenbeck, T.; Alessandrini, M.; Friboulet, D.; Bernard, O., CREASEG: a free software for the evaluation of image segmentation algorithms based on level-set, 2010 IEEE International Conference on Image Processing · doi:10.1109/icip.2010.5652991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.