×

Gradient estimates and Harnack inequalities for a Yamabe-type parabolic equation under the Yamabe flow. (English) Zbl 1469.35069

The gradient estimate is an essential tool in understanding solutions of nonlinear partial differential equations from geometry. In 1980s, Li and Yau proved the well-known Li-Yau type estimate to the heat equation \((\Delta-\partial_t)u = 0\). Based on this, they deduced Harnack inequalities. The Harnack inequality was also applied to the Ricci flow by Hamilton and played an important role in solving the Poincaré conjecture. Hamilton proved an elliptic type gradient estimate, which is known as the Hamilton type gradient estimate, and showed that the Harnack estimate of Li and Yau is the trace of a full matrix inequality. Kotschwar later generalized the Hamilton type gradient estimate to the noncompact case. In 2018, Dung gave a global Hamilton type gradient estimate for a Yamabe type parabolic equation of \((\Delta-\partial_t)u = + au + bu^\alpha\) on Riemannian manifolds with the Ricci curvature bounded from below.
In this paper, the author extends the previous results deriving a series of gradient estimates and Harnack inequalities for positive solutions of a Yamabe-type parabolic partial differential equation \[(\Delta- \partial_t)u = pu + qu^{a+1}\] under the Yamabe flow. Here \(p, q \in C^{2,1} (M^n \times [0, T])\) and \(a\) is a positive constant.

MSC:

35B45 A priori estimates in context of PDEs
53E99 Geometric evolution equations
35K59 Quasilinear parabolic equations
35R01 PDEs on manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubin, T., Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J Math Pures Appl (9), 55, 269-296 (1976) · Zbl 0336.53033
[2] Bailesteanu, M.; Cao, X.; Pulemotov, A., Gradient estimates for the heat equation under the Ricci flow, J Funct Anal, 258, 3517-3542 (2010) · Zbl 1193.53139 · doi:10.1016/j.jfa.2009.12.003
[3] Brandolini, L.; Rigoli, M.; Setti, A. G., Positive solutions of Yamabe type equations on complete manifolds and applications, J Funct Anal, 160, 176-222 (1998) · Zbl 0923.58049 · doi:10.1006/jfan.1998.3313
[4] Cao, H. D.; Zhu, X. P., A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow, Asian J Math, 10, 165-492 (2006) · Zbl 1200.53057 · doi:10.4310/AJM.2006.v10.n2.a2
[5] Cao, X.; Hamilton, R. S., Differential Harnack estimates for time-dependent heat equations with potentials, Geom Funct Anal, 19, 989-1000 (2009) · Zbl 1183.53059 · doi:10.1007/s00039-009-0024-4
[6] Chen, L.; Chen, W., Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds, Ann Global Anal Geom, 35, 397-404 (2009) · Zbl 1177.35040 · doi:10.1007/s10455-008-9141-9
[7] Cheng, S. Y.; Yau, S. T., Differential equations on Riemannian manifolds and their geometric applications, Comm Pure Appl Math, 28, 333-354 (1975) · Zbl 0312.53031 · doi:10.1002/cpa.3160280303
[8] Dung, H. T., Gradient estimates and Harnack inequalities for Yamabe-type parabolic equations on Riemannian manifolds, Differential Geom Appl, 60, 39-48 (2018) · Zbl 1516.35131 · doi:10.1016/j.difgeo.2018.05.005
[9] Hamilton, R. S., The Harnack estimate for the Ricci flow, J Differential Geom, 37, 225-243 (1993) · Zbl 0804.53023 · doi:10.4310/jdg/1214453430
[10] Hamilton, R. S., A matrix Harnack estimate for the heat equation, Comm Anal Geom, 1, 113-126 (1993) · Zbl 0799.53048 · doi:10.4310/CAG.1993.v1.n1.a6
[11] Huang, H., Local derivative estimates for heat equations on Riemannian manifolds (2007)
[12] Huang, H., Local derivative estimates for the heat equation coupled to the Ricci flow (2018)
[13] Kotschwar, B., Hamilton’s gradient estimate for a nonlinear parabolic equation on Riemannian manifolds, Proc Amer Math Soc, 135, 3013-3019 (2007) · Zbl 1127.58021 · doi:10.1090/S0002-9939-07-08837-5
[14] Li, J., Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Rieman-nian manifolds, J Funct Anal, 100, 233-256 (1991) · Zbl 0746.58078 · doi:10.1016/0022-1236(91)90110-Q
[15] Li, P., Lecture Notes on Geometric Analysis, Lecture Notes Series No. 6 (1993), Seoul: Seoul National University, Seoul · Zbl 0822.58001
[16] Li, P.; Yau, S. T., On the parabolic kernel of the Schrödinger operator, Acta Math, 156, 153-201 (1986) · Zbl 0611.58045 · doi:10.1007/BF02399203
[17] Li, Y.; Zhu, X., Harnack estimates for a heat-type equation under Ricci flow, J Differential Equations, 260, 3270-3301 (2016) · Zbl 1330.53086 · doi:10.1016/j.jde.2015.10.024
[18] Li, Y.; Zhu, X., Harnack estimates for a nonlinear parabolic equation under Ricci flow, Differential Geom Appl, 56, 67-80 (2018) · Zbl 1381.53121 · doi:10.1016/j.difgeo.2017.10.017
[19] Lotay, J. D.; Wei, Y., Laplacian flow for closed G2 structures: Shi-type estimates, uniqueness and compactness, Geom Funct Anal, 27, 165-233 (2017) · Zbl 1378.53078 · doi:10.1007/s00039-017-0395-x
[20] Munteanu, O.; Wang, J., Geometry of shrinking Ricci solitons, Compos Math, 151, 2273-2300 (2015) · Zbl 1339.53036 · doi:10.1112/S0010437X15007496
[21] Perelman, G., The entropy formula for the Ricci flow and its geometric applications (2002) · Zbl 1130.53001
[22] Schoen, R., Conformal deformation of a Riemannian metric to constant scalar curvature, J Differential Geom, 20, 479-495 (1984) · Zbl 0576.53028 · doi:10.4310/jdg/1214439291
[23] Shi, W. X., Deforming the metric on complete Riemannian manifolds, J Differential Geom, 30, 223-301 (1989) · Zbl 0676.53044
[24] Souplet, P.; Zhang, Q. S., Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull Lond Math Soc, 38, 1045-1053 (2006) · Zbl 1109.58025 · doi:10.1112/S0024609306018947
[25] Trudinger, N. S., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann Sc Norm Super Pisa Cl Sci (5), 22, 265-274 (1968) · Zbl 0159.23801
[26] Yamabe, H., On a deformation of Riemannian structures on compact manifolds, Osaka J Math, 12, 21-37 (1960) · Zbl 0096.37201
[27] Yang, Y., Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds, Proc Amer Math Soc, 136, 4095-4102 (2008) · Zbl 1151.58013 · doi:10.1090/S0002-9939-08-09398-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.