×

Lie symmetry analysis of the time fractional KdV-type equation. (English) Zbl 1334.37075

Summary: The Lie symmetry analysis method is extended to deal with the time fractional KdV-type equation. It is shown that this equation can be reduced to an equation with the Erdélyi-Kober fractional derivative. This method can also be applied to symmetry classification of fractional equations with some arbitrary functions.

MSC:

37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
35R11 Fractional partial differential equations
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tarasov, V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (2010), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1214.81004
[2] Lenzia, E. K.; Mendesa, R. S.; Gonc-alvesb, G.; Lenzib, M. K.; da Silva, L. R., Fractional diffusion equation and Green function approach: exact solutions, Physica A, 360, 215-226 (2006)
[3] Suat Erturk, Vedat; Momani, Shaher, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math., 215, 142-151 (2008) · Zbl 1141.65088
[4] Ray, S. S., Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simul., 14, 1295-1306 (2009) · Zbl 1221.65284
[5] Abdulaziz, O.; Hashim, I.; Ismail, E. S., Approximate analytical solution to fractional modified KdV equations, Math. Comput. Model., 49, 136-145 (2009) · Zbl 1165.35441
[6] Gazizov, R. K.; Kasatkin, A. A., Construction of exact solutions for fractional order differential equations by the invariant subspace method, Comput. Math. Appl., 66, 576-584 (2013) · Zbl 1348.34012
[7] Buckwar, E.; Luchko, Y., Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations, J. Math. Anal. Appl., 227, 81-97 (1998) · Zbl 0932.58038
[8] Gazizov, R. K.; Kasatkin, A. A.; Lukashchuk, S. Yu., Continuous transformation groups of fractional differential equations, Vestnik, USATU, 9, 125-135 (2007), (in Russian)
[9] Gazizov, R. K.; Kasatkin, A. A.; Lukashchuk, S. Yu., Symmetry properties of fractional diffusion equations, Phys. Scr. T, 136 (2009), 014016 (5 pp)
[10] Kasatkin, A. A., Symmetry properties for systems of two ordinary fractional differential equations, Ufa Math. J., 4, 65-75 (2012)
[11] Sahadevan, R.; Bakkyaraj, T., Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl., 393, 341-347 (2012) · Zbl 1245.35142
[12] Wang, G. W.; Liu, X. Q.; Zhang, Y. Y., Lie symmetry analysis to the time fractional generalized fifth-order KdV equation, Commun. Nonlinear Sci. Numer. Simul., 18, 2321-2326 (2013) · Zbl 1304.35624
[13] El-Wakil, S. A.; Elhanbaly, A.; Abdou, M. A., Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput., 182, 313-324 (2006) · Zbl 1106.65115
[14] Wang, G. W.; Xu, T. Z., Symmetry properties and explicit solutions of the nonlinear time fractional KdV equation, Boundary Value Prob., 2013 (2013), 232 (13pp) · Zbl 1293.22006
[15] Fokas, A. S.; Liu, Q. M., Nonlinear interaction of traveling waves of nonintegrable equations, Phys. Rev. Lett., 72, 3293-3296 (1994) · Zbl 0973.35502
[16] Zhdanov, R. Z., Conditional Lie-Bäcklund symmetries and reductions of evolution equations, J. Phys. A: Math. Gen., 128, 3841-3850 (1995) · Zbl 0859.35115
[17] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51, 67-76 (2006) · Zbl 1137.65001
[18] Jumarie, G., Cauchy’s integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order, Appl. Math. Lett., 23, 1444-1450 (2010) · Zbl 1202.30068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.