×

Dual-objective optimal mixture designs. (English) Zbl 1336.62215

Summary: Mixture experiments are widely used in many industries and particularly in the manufacture of consumer products. Almost all work to date assumes a single study objective, which is unrealistic. Researchers may want to estimate model parameters and make predictions or extrapolations at the same time. We discuss design issues for determining the optimal proportions of the mixture components when there are two or more objectives in the study and there is a large sample size. We present a general methodology for constructing two types of dual-objective optimal design for mixture experiments and discuss the general applicability of the design strategy to more complicated types of mixture design problems, including mixture experiments.

MSC:

62K05 Optimal statistical designs
62P30 Applications of statistics in engineering and industry; control charts
62-07 Data analysis (statistics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atkinson, Compound D and Ds-optimal designs for determining the order of a chemical reaction, Technometrics 39 pp 347– (1997)
[2] Atkinson, Optimum experimental designs, with SAS (2007) · Zbl 1183.62129
[3] Atwood, Optimal and efficient designs of experiments, Ann. Math. Statist. 40 pp 1570– (1969) · Zbl 0182.51905 · doi:10.1214/aoms/1177697374
[4] Atwood, J. Amer. Statist. Assoc. 66 pp 855– (1971)
[5] Berger, An introduction to optimal designs for social and biomedical research (2009) · Zbl 1182.62154 · doi:10.1002/9780470746912
[6] Brown, An algorithmic construction of optimal minimax designs for heteroscedastic linear models, J. Statist. Plann. Inference 85 pp 103– (2000) · Zbl 0961.62065 · doi:10.1016/S0378-3758(99)00073-7
[7] Chen, Analysis of quantal data from mixture experiments, Environmetrics 7 pp 503– (1996) · doi:10.1002/(SICI)1099-095X(199609)7:5<503::AID-ENV227>3.0.CO;2-E
[8] Chen, Optimal Minimax Designs for estimating response surface over a prespecified region in a heteroscedastic model, Stat. and Prob. Letters 78 pp 1914– (2008) · Zbl 1147.62356 · doi:10.1016/j.spl.2008.01.059
[9] Clyde, The equivalence of constrained and weighted designs in multiple objective design problems, J. Amer. Statist. Assoc. 91 pp 1236– (1996) · Zbl 0883.62079 · doi:10.1080/01621459.1996.10476993
[10] Cook, Model Robust, Linear-Optimal Designs, Technometrics 24 pp 49– (1982) · Zbl 0483.62063 · doi:10.1080/00401706.1982.10487708
[11] Cook, On the equivalence of constrained and compound optimal designs, J. Amer. Statist. Assoc. 89 pp 687– (1994) · Zbl 0799.62081 · doi:10.1080/01621459.1994.10476794
[12] Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data (2002) · Zbl 1001.62024 · doi:10.1002/9781118204221
[13] Dette, A generalization of D and D1-optimal designs in polynomial regression, Ann. Statist. 18 pp 1784– (1990) · Zbl 0714.62068 · doi:10.1214/aos/1176347878
[14] Furlanetto, Mixture experiment methods in the development and optimization of microemulsion formulations, J. Pham. Biomed. Ana. 55 pp 610– (2011) · doi:10.1016/j.jpba.2011.01.008
[15] Heinsman, Optimization of a household product formulation using a mixture experiment, Quality Engineering 7 pp 583– (1995) · doi:10.1080/08982119508918805
[16] Huang, Sequential construction of multiple-objective designs, Biometrics 54 pp 1388– (1998a) · Zbl 1058.62547 · doi:10.2307/2533665
[17] Huang, Multiple-objective optimal designs, J. Biopharm. Stat. 8 pp 635– (1998b) · Zbl 0919.62078 · doi:10.1080/10543409808835265
[18] Kiefer, Optimal designs in regression problems, II., Ann. Math. Statist. 32 pp 298– (1961) · Zbl 0099.13502 · doi:10.1214/aoms/1177705160
[19] King, Optimal minimax designs for prediction in heteroscedastic models, J. Statist. Plann. Inference 69 pp 371– (1998) · Zbl 0938.62078 · doi:10.1016/S0378-3758(97)00167-5
[20] LAuter, Experimental planning in a class of models, Math. Oper. and Stat. 36 pp 1627– (1974)
[21] LAuter, Optimal multipurpose designs for regression models, Math. Oper. and Stat. 7 pp 51– (1976)
[22] Lee, Constrained optimal designs for regression models, Comm. in Stat., Part A - Theory & Methods 16 pp 765– (1987) · Zbl 0614.62097 · doi:10.1080/03610928708829401
[23] Lee, Constrained optimal designs, J. Statist. Plann. Inference 18 pp 377– (1988) · Zbl 0667.62055 · doi:10.1016/0378-3758(88)90114-0
[24] Pecar, Combinations of optimality criteria and optimum designs, Comp. Stat. Data Ana. 8 pp 1– (1989) · Zbl 0703.62073 · doi:10.1016/0167-9473(89)90060-1
[25] Piepel, Models for mixture experiments when the response depends on the total amount, Technometrics 27 pp 219– (1985) · Zbl 0588.62132 · doi:10.1080/00401706.1985.10488046
[26] ScheffÉ, Experiments with mixtures, J. R. Stat. Soc. Ser. B Stat. Method 20 pp 344– (1958)
[27] ScheffÉ, The simplex-centroid design for experiments with mixtures, J. R. Stat. Soc. Ser. B Stat. Method 25 pp 235– (1963)
[28] Silvey , S. D. 1980 Optimal design Chapman and Hall · Zbl 0468.62070
[29] Stigler, Optimal experimental design for polynomial regression, J. Amer. Statist. Assoc. 66 pp 311– (1971) · Zbl 0217.51701 · doi:10.1080/01621459.1971.10482260
[30] Studden, Ds-optimal designs for polynomial Regression Using Continued Fractions, Ann. Statist. 8 pp 1132– (1980) · Zbl 0447.62070 · doi:10.1214/aos/1176345150
[31] White, A new nonlinear mixture response surface paradigm for the study of synergism: a three drug example, Current Drug Metabolism 4 pp 399– (2003) · doi:10.2174/1389200033489316
[32] Wolfram, Mathematica (1991)
[33] Wong, A graphical approach for constructing constrained D and L-optimal designs using efficiency plots, J. Stat. Sim. & Comp. 53 pp 143– (1995) · Zbl 0875.62378 · doi:10.1080/00949659508811702
[34] Yu, A-optimal designs of parameter estimation for mixture models of two-degree (in Chinese), J. Northeast Univ. Tech. 14 pp 307– (1993)
[35] Zhu, Multiple-objective optimal designs for the logit model, Comm. in Stat., Part A - Theory & Methods 27 pp 1581– (1998) · Zbl 0901.62096 · doi:10.1080/03610929808832178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.