×

A stable and scalable hybrid solver for rate-type non-Newtonian fluid models. (English) Zbl 1382.76172

Summary: We present and analyze hybrid discretization schemes for rate-type non-Newtonian fluids models. The method employs higher order conforming approximations for velocity and pressure of the Stokes equation and lower order approximations such as piecewise linear or piecewise constant for conformation tensor. To reduce the accuracy gap, the constitutive equation is discretized on a refined mesh, which is obtained by subdividing the mesh for the velocity and pressure. The temporal discretization is made by the standard semi-Lagrangian scheme. The fully discrete nonlinear system is shown to be solved iteratively by applying the three steps:(1) locating the characteristic feet of fluid particles, (2) solving the constitutive equation, and (3) solving the momentum and continuity equations (Stokes-type equation). To achieve a scalability of the solution process, we employ an auxiliary space preconditioning method for the solution to the conforming finite element methods for the Stokes equation. This method is basically two-grid method, in which lower-order finite element spaces are employed as auxiliary spaces. It is shown to not only lead to the mesh independent convergence, but also improve robustness and scalability. Stability analysis shows that if \(\Delta t = O(h^d)\), where \(d\) is the dimension of domain, then the scheme admits a globally unique solution. A number of full 3D test cases are provided to demonstrate the advantages of the proposed numerical techniques in relation to efficiency, robustness, and weak scalability.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
76A05 Non-Newtonian fluids

Software:

PETSc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lee, Y.-J.; Xu, J.; Zhang, C.-S., Stable finite element discretizations for viscoelastic flow models, (Handbook of Numerical Analysis, Vol. XVI (2011))
[2] Dealy, J.; Vu, T., The weissenberg effect in molten polymers, J. Non-Newton. Fluid Mech., 3, 127-140 (1977)
[3] Oldroyd, J., Non-newtonian effects in steady motion of some idealized elasto-viscous liquids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 245, 278-297 (1958) · Zbl 0080.38805
[4] Johnson, M.; Segalman, D., A model for viscoelastic fluid behaviour which allows non-newtonian deformation, J. Non-Newton. Fluid Mech., 2, 255-270 (1977) · Zbl 0369.76008
[5] Hulsen, M., Some properties and analytical expressions for plane flow of leonov and giesekus models, J. Non-Newton. Fluid Mech., 30, 85-92 (1988)
[6] Sun, J.; Phan-Thien, N.; Tanner, R. I., An adaptive viscoelastic stress splitting scheme and its applications: AVSS/SI and AVSS/SUPG, J. Non-Newton. Fluid Mech., 65, 1, 75-91 (1996)
[7] Afonso, A.; Oliveira, P.; Pinho, F.; Alves, M., The log-conformation tensor approach in the finite-volume method framework, J. Non-Newton. Fluid Mech., 157, 55-65 (2009) · Zbl 1274.76084
[8] Kupferman, R., On the linear stability of plane couette flow for an oldroyd-b fluid and its numerical approximation, J. Non-Newton. Fluid Mech., 127, 169-190 (2005) · Zbl 1187.76658
[9] Lee, Y.-J.; Xu, J., New formulations, positivity preserving discretizations and stability analysis for non-newtonian flow models, Comput. Methods Appl. Mech. Engrg., 195, 1180-1206 (2006) · Zbl 1176.76068
[10] Douglas, J.; Russell, T. F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 5, 871-885 (1982) · Zbl 0492.65051
[11] Pironneau, O., On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numer. Math., 38, 3, 309-332 (1981-1982) · Zbl 0505.76100
[12] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers, RAIRO Anal. Numer., R2, 129-151 (1974) · Zbl 0338.90047
[13] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag · Zbl 0788.73002
[14] Scott, L.; Vogelius, M., Conforming finite element methods for incompressible and nearly incompressible continua, (Large-Scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983). Large-Scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983), Lectures in Appl. Math., vol. 22-2 (1985), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0582.76028
[15] Lee, Y.-J.; Xu, J.; Zhang, C., Global existence, uniqueness and optimal solvers of discretized viscoelastic flow models, M3AS, 21, 8, 1-20 (2011)
[16] Zhang, S., Divergence-free finite elements on tetrahedral grids for \(k \geq 6\), Math. Comp., 80, 274, 669-695 (2011) · Zbl 1410.76204
[17] Boyaval, S.; Lelievre, T.; Mangoubi, C., Free-energy-dissipative schemes for the Oldroyd-B model, ESAIM:M2AN, 43, 523-561 (2009) · Zbl 1167.76018
[18] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0585.65077
[19] Temam, R., Navier-Stokes Equations (1977), North Holland · Zbl 0335.35077
[20] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Int. J. Comput. Fluids, 1, 73-100 (1973) · Zbl 0328.76020
[21] Boffi, D., Three-dimensional finite element methods for the stokes problems, SIAM J. Numer. Anal., 34, 664-670 (1997) · Zbl 0874.76032
[22] Scott, L. R.; Vogelius, M., Conforming finite element methods for incompressible and nearly incompressible continua, (Large-Scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983). Large-Scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983), Lectures in Appl. Math., vol. 22 (1985), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 221-244
[23] Hu, X.; Lee, Y.-J.; Xu, J.; Zhang, C., On Adaptive Eulerian-Lagrangian method for linear convection-diffusion problems, J. Sci. Comput., 58, 90-114 (2014) · Zbl 1335.65081
[24] Abou-Kandil, H.; Freiling, G.; Ionescu, V.; Jank, G., Matrix Riccati equations: in control and systems theory, (Systems and Control (2003), Birkhäuser Verlag: Birkhäuser Verlag Boston) · Zbl 1027.93001
[25] Hom, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge UP: Cambridge UP New York
[26] Brenner, S. C.; Scott, L. R., (The Mathematical Theory of Finite Element Methods. The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15 (2002), Springer-Verlag: Springer-Verlag New York) · Zbl 1012.65115
[27] Elman, H.; Silvester, D.; Wathen, A., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics (2005), Oxford University Press: Oxford University Press USA · Zbl 1083.76001
[28] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[29] Larin, M.; Reusken, A., A comparative study of efficient iterative solvers for generalized Stokes equations, Numer. Linear Algebra Appl., 15, 1, 13-34 (2008) · Zbl 1212.65493
[30] Brandt, A.; Dinar, N., Multigrid solutions to elliptic flow problems, (Parter, S., Numerical Methods for Partial Differential Equations (1979)), 53-147
[31] Wittum, G., Multi-grid methods for stokes and navier-stokes equations transforming smoothers: Algorithm and numerical results, Numer. Math., 54, 543-563 (1989) · Zbl 0645.76031
[32] Vanka, S., Block-implicit Multigrid solution of Navier-Stokes equations in primitive variables, J. Comput. Phys., 65, 138-158 (1986) · Zbl 0606.76035
[33] Braess, D.; Sarazin, R., An efficient smoother for the Stokes problem, Appl. Numer. Math., 23, 1, 3-19 (1997) · Zbl 0874.65095
[34] Bramble, J. H.; Pasciak, J. E., A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp., 50, 181, 1-17 (1988) · Zbl 0643.65017
[35] Rusten, T.; Winther, R., A preconditioned iterative method for saddle point problems, SIAM J. Matrix Anal. Appl., 13, 3, 887-904 (1992) · Zbl 0760.65033
[36] May, D. A.; Moresi, L., Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, Phys. Earth Planet. Inter., 171, 1-4, 33-47 (2008)
[37] Geenen, T.; ur Rehman, M.; MacLachlan, S. P.; Segal, G.; Vuik, C.; van den Berg, A. P.; Spakman, W., Scalable robust solvers for unstructured FE geodynamic modeling applications: Solving the Stokes equation for models with large localized viscosity contrasts, Geochem. Geophys. Geosyst., 10, 9, 1-12 (2009)
[38] Paige, C. C.; Saunders, M. A., Solutions of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12, 4, 617-629 (1975) · Zbl 0319.65025
[39] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[40] Brandt, A.; McCormick, S. F.; Ruge, J. W., Algebraic multigrid (AMG) for sparse matrix equations, (Evans, D. J., Sparsity and Its Applications (1984), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0548.65014
[41] Brandt, A., Algebraic multigrid theory: The symmetric case, Appl. Math. Comput., 19, 23-56 (1986) · Zbl 0616.65037
[42] Stüben, K., An introduction to algebraic multigrid, (Trottenberg, U.; Oosterlee, C. W.; Schüller, A., Multigrid (2000), Academic Press: Academic Press London), 413-532, Appendix A
[43] Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid (2001), Academic Press Inc.: Academic Press Inc. San Diego, CA, With contributions by A. Brandt, P. Oswald and K. Stüben
[44] Brandt, A., (Barth, T. J.; etal., Multiscale Scientific Computation: Review 2001 (2002), Springer)
[45] Falgout, R. D., An introduction to algebraic multigrid, Comput. Sci. Eng., 8, 24-33 (2006)
[46] Griebel, M.; Metsch, B.; Oeltz, D.; Schweitzer, M. A., Coarse grid classification: A parallel coarsening scheme for algebraic multigrid methods, Numer. Linear Algebra Appl., 13, 2-3, 193-214 (2006), Also available as SFB 611 preprint No. 225, Universität Bonn, 2005 · Zbl 1174.65544
[47] Falgout, R. D.; Jones, J. E.; Meier Yang, U., Pursuing scalability for hypre’s conceptual interfaces, ACM Trans. Math. Software, 31, 3, 326-350 (2005) · Zbl 1136.65313
[48] Sterck, H. D.; Falgout, R. D.; Nolting, J. W.; Yang, U. M., Distance-two interpolation for parallel algebraic multigrid, Numer. Linear Algebra Appl., 15, 2-3, 115-139 (2008) · Zbl 1212.65139
[50] Shu, S.; Sun, D.; Xu, J., An algebraic multigrid method for higher order finite element discretizations, Computing, 77, 4, 347-377 (2006) · Zbl 1127.65092
[51] Heys, J.; Manteuffel, T.; McCormick, S.; Olson, L., Algebraic multigrid for higher-order finite elements, J. Comput. Phys., 204, 2, 520-532 (2005) · Zbl 1060.65673
[53] Zhang, L.-B., A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection, Numer. Math. Theory Methods Appl., 2, 65-89 (2009) · Zbl 1199.65399
[56] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 461-469 (1993) · Zbl 0780.65022
[57] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1002.65042
[58] Sterck, H. D.; Yang, U. M.; Heys, J. J., Reducing complexity in parallel algebraic multigrid preconditioners, SIAM J. Matrix Anal. Appl., 27, 4, 1019-1039 (2006) · Zbl 1102.65034
[59] Lunsmann, W.; Genieser, L.; Armstrong, R.; Brown, R., Finite element analysis of steady viscoelastic flow around a sphere in a tube: calculations with constant viscosity models, J. Non-Newton. Fluid Mech., 48, 63-99 (1993) · Zbl 0780.76010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.